Skip to content

Search results for “perovskite”

A different angle on perovskite defects

Scientists in China took a closer look at the role of defects in limiting the performance of perovskite solar cells, demonstrating a screening effect that could be tuned to make material defects “invisible” to charge carriers, greatly improving cell performance. Using this approach they demonstrate a 22% efficient inverted perovskite solar cell, and theorize several new pathways to even higher performance.

Keeping track of hydrogen for perovskite performance

Scientists in the United States discovered that hydrogen plays a leading role in the formation of defects in a perovskite film, which limit their performance as PV devices. The discovery, according to the researchers, offers further insight into observations already established by trial and error and could help to push the impressive efficiency achievements already made by perovskites even higher.

Large-area perovskite solar module with 18% efficiency

Researchers in Germany claim to have overcome the main challenge for the development of large-area perovskite PV modules – scaling up from the cell to the module level. They achieved an efficiency of up to 16.6% on a module surface of ​​more than 50 centimeters squared, and 18% on a module with an area of 4 centimeters squared.

Doping and capping promise perovskite stability

Scientists demonstrated two new approaches to improving the stability of perovskite solar cells. By both incorporating rubidium into the structure of the perovskite, and adding a film of two-dimensional perovskite as a capping layer, they were able to demonstrate a significant reduction in the cell’s sensitivity to moisture. The group says its research will open up new routes to improved performance and stability in perovskite PV.

Solliance hits 28.7% efficiency on perovskite/silicon tandem solar cell

The Dutch consortium has achieved the record result by combining, in a four-terminal tandem configuration, an 18.6% efficient highly near-infrared transparent perovskite with a prototype of a c-Si interdigitated back contact (IBC) silicon heteroJunction (SHJ) cell developed by Japanese electronics manufacturer Panasonic. The perovskite cell was also combined with other kinds of solar cells and other remarkable record efficiencies were hit.

1

Perovskite solar cell with larger grain size and 23.17% efficiency

The result was achieved for a small area device with the size of 0.1 sq cm. The cell was fabricated with a Tin(IV) oxide electron transport layer modified with crystalline polymeric carbon nitrides (cPCN).

Chinese startup claims 20.5% efficiency for mini perovskite PV module

China’s UtmoLight has developed a new PV module with an area of just 63.98 cm2 and a 20.5% efficiency rate, as certified by Japan Electrical Safety & Environment Technology Laboratories.

1

UNIST, EPFL claim 25.6% efficiency world record for perovskite solar cell

Scientists have set a new efficiency record for a single-junction perovskite solar cell at 25.6%. The cell additionally showed operational stability for 450 hours, and intense electroluminescence with external quantum efficiencies of more than 10%.

2

Multi-layer front contact perovskite solar cells with 16.55% efficiency

Japanese scientists have used spray pyrolysis deposition to fabricate perovskite solar cells based on a titanium oxide electron transport layer. They claim that the cells have the potential to reach a power conversion efficiency rating of more than 30%.

MIT scientists reveal method to identify stable perovskites

U.S. researchers are using a data fusion approach to identify the most stable perovskites for PV cells. Their machine-learning method combines perovskite test results with first-principles physical modeling to identify the best candidates.

This website uses cookies to anonymously count visitor numbers. View our privacy policy.

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close