Quality Roundtable at Solar Power International 2017

Quality first: an industry-wide discussion of the path forward

Initiative partner:

Gold sponsors:

Silver sponsor:

September 12, 2017 – Quality Roundtable at SPI
3:00-4:10 Presentations and quality cases

4:10-4:20 Break

4:20-5:00 Interactive panel discussion
Materials and New Testing Standards to Avoid Backsheet Failures

September 12, 2017

DuPont Photovoltaic Solutions

For over 40 years

our material innovations have led the photovoltaics industry forward, and helped our clients transform the power of the Sun into power for us all. Today we offer a portfolio of solutions that deliver proven power and lasting value over the long term. Whatever your material needs, you can count on quality DuPont Photovoltaic Solutions to deliver the performance, efficiency and value you require, day after day after day…
Global Concerns of PV Module Field Failures

Defects of PV modules in the field are not uncommon, with most of these defective modules using non field-proven materials. Defects are seen even among systems in use less than five years. Field studies have reported:

- 22% of global modules have shown visual defects\(^1\)
- Backsheet defects = 7.5%

\(^1\) From a global field-module survey including more than 70 global installations, (1.9 MM+ modules at 450+ MW) in NA, EU and AP.

PV module defects increased from 19% in 2013 to 48% in 2015\(^2\)
- Backsheet defects = Particularly Serious

\(^2\) TUV Rheinland Intersolar 2015, Roundtable Solarpraxis
DuPont Field Degradation and Defect Categories

Cell defects
• Snail Trails
• Corrosion
• ARC
• Delamination

EVA defects
• Yellowing
• Delamination

Backsheet defects
• Air Side Yellowing
• Front Side Yellowing
• Cracking
• Delamination
• Bubbling
• Other

Other defects
• Jbox Melting
• Cable corrosion
• Glass breakage
Yellowing: Indicates Polymer Degradation and correlates with loss of Mechanical Properties

- Yellowing witnessed in many different fields, in > 6 different countries with less than 5 years in the field
 - China, USA, Germany, Belgium, Spain, Israel

Yellowing is an indication of polymer degradation and can place modules at risk for failure and safety.
Cracking: Backsheet Loses Insulation and Places Modules at High Risk for Failure and Safety

PET based backsheets:
- 9 yrs roof array Arizona: 55kW PET-based backsheet
 - PET based backsheet ~15% of modules cracked, 100% airside yellowing.

PVDF-based backsheets:
- 4 yrs solar farm NA: 40kW PVDF-based backsheet
 - PVDF-based Backsheet cracking & delamination 57% of modules cracked

PA-based backsheets:
- 4 yrs solar farm China: 20MW PA-based backsheet
 - PA-based Backsheet large amount of cracking with ~40% of modules cracked.
Failures inherent to PA, PET, and PVDF backsheets threaten the long-term performance, durability and return on investment of solar panels.

- **Jeopardize electrical safety**
 - Unproven backsheets decrease electrical safety and increase the potential for ground faults and potential injury.

- **Increase replacement costs and a system’s LCOE**
 - In an actual case study, replacing 6% of modules in a residential system was found to be equivalent to an annual extra 1% degradation rate.

- **Diminish PV manufacturer reputation and resale value**
 - Poor materials lower resale value and trustworthiness of supplier, in addition to forcing new owner to conduct costly testing to ensure reliable performance.
Module Accelerated Sequential Testing (MAST)
- Shortened to 6.3 Months with UV Xenon Exposure*

Repeated sequential stresses mimic field exposures
Resulting degradation better matches field degradation that is not detected by single tests and current industry standards

* Original MAST Test 65W/m² UVA, 70°C BPT (1000 hrs x 4), 9 months

DH 85°C/85%RH
UVX 123 W/m², 90°C BPT
TC 85°C <= -40°C, per IEC 61215
Comparison of MAST and Field Results

<table>
<thead>
<tr>
<th>Sequential Test</th>
<th>Double Sided Fluoro Film</th>
<th>Single Sided Fluoro Film</th>
<th>Non-Fluoro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement</td>
<td>Tedlar® P/PF</td>
<td>Tedlar® P/PF</td>
<td>PA</td>
</tr>
<tr>
<td></td>
<td>PVDF</td>
<td>PVDF</td>
<td>PET (Hydro-stabilized)</td>
</tr>
<tr>
<td>Yellowing</td>
<td>Excellent</td>
<td>Fair / Yellowing</td>
<td>Poor / Cracking</td>
</tr>
<tr>
<td>Mechanical Loss-Cracking</td>
<td>Excellent</td>
<td>Fair / Yellowing</td>
<td>Poor / Cracking</td>
</tr>
</tbody>
</table>

1s PVDF Cracking

AAA Cracking

Yellowing and mechanical loss after MAST exposure

1000h DH − 1000h UVA − 3x(200 cycles TC − 1000h UVA)
 DH 85C/85%RH UVA 65W/sqm (300nm–400nm) 70C BPT TC 85C −40C
The Solution: Materials Matter™

• Field-proven materials deliver long-term performance and lasting value.

• DuPont™ Tedlar® PVF film-based backsheets superior insulation and weatherability are field-proven to reduce system defects. This leads to:
 – Improved electrical safety.
 – Reduction of ground faults.
 – Increased system availability.
 – Reduced operational expenses.

Extending System Lifetime

Materials Matter™
The use of field-proven materials is critical to the long-term performance and reliability of your system
The Top 3 Tips for Strengthening Your Solar Investment

• Use proven materials that have been performing well in the field for many years.
• Adopt DuPont Module Accelerated Sequential Testing (MAST).
• Avoid materials and backsheets that show degradation and failures in sequential test protocols.

Switzerland 1982 Japan 1983 USA 1984 China 1985

With 40+ years of PV experience as the industry leader, DuPont materials and rigorous testing protocol helps deliver proven power and lasting value, day after day.
Quality case
Backsheet and encapsulant failure

A failure of backsheets and encapsulants at a solar project resulted in various module- and cell-level problems and power loss, leading to a dispute between the module maker and the company which procured the modules.
Backsheet and encapsulant failure

• Routine inspection reveals yellowing, bubbling and cracking of backsheets, as well as cell problems
• Thermal imaging shows hot spots on isolated cells
• In-field electroluminescent imaging on random modules indicates various cell-level defects, including busbar delamination, fine line interruptions and cracked cells
• Chemical analysis of the air-side layer of the backsheet showed the degradation of PET to Terephthalic acid.
Backsheet and encapsulant failure

Backsheet defects
1. Significant air-side yellowing in all modules
2. Significant bubbling and delamination
3. Backsheet cracks potential safety issue
4. Burn-marks created most likely by shunting and/or arc fault from loss of insulation

Copyright © DuPont 2017. All rights reserved.
Backsheet and encapsulant failure

- The plant was a donation by a utility to a non-profit, and the utility procured the modules.
- The utility decided to pursue a warranty claim, and enlisted the assistance of TUV to document the problem.
- The module maker claims that backsheet failures are not covered under its warranty.
Backsheet and encapsulant failure

- Are the cell-level problems related to backsheets failures?
- Are module makers responsible for backsheets failures, even if this is not part of the warranty?
- Should the entire set of modules be replaced?
- Are such problems the fault of a specific backsheets batch, or are these routine problems with certain backsheets chemistries?
Presentation
Small components. Big impact.
Cabling and Connectors in PV installations

QRT SPI | September 12th 2017 | Brian Mills Product Manager Photovoltaics- N.A.
PROJECT BANKABILITY - CONTACT RESISTANCE

Why connectors have a big impact

Consequences:

- High risk for (partial) connector failures
- Performance losses, higher PPM-rates and downtimes of modules, strings or plants
- High service/maintenance and spare part costs for repairing
- Hotspots and fire in PV system and reconstruction costs
- High costs for legal disputes due to undefined liabilities

Contact resistance

Power

Higher temperature & power loss

Increasing contact resistance

Higher contact resistance

Higher temperature & power loss
PROJECT BANKABILITY - FIELD DATA

Failures and their financial impact

CPN (cost priority number) based on FMEA (Failure Modes and Effects Analysis)
Solar Bankability project by European Commission’s Horizon 2020

Top 20 technical failures

<table>
<thead>
<tr>
<th>Failure Description</th>
<th>Cost Priority Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>INV ERROR MESSAGE</td>
<td>€ 0.17</td>
</tr>
<tr>
<td>W03 POTENTIAL INDUCED DEGRADATION</td>
<td>€ 0.21</td>
</tr>
<tr>
<td>CONNECTOR MAIN SWITCH OPEN & DOES NOT RECLOSE AUTOMATICALLY</td>
<td>€ 0.22</td>
</tr>
<tr>
<td>M03 GLASS BREAKAGE</td>
<td>€ 0.27</td>
</tr>
<tr>
<td>TRACKER FAILURE</td>
<td>€ 0.31</td>
</tr>
<tr>
<td>B03 BROKEN MODULE</td>
<td>€ 0.34</td>
</tr>
<tr>
<td>G08 WRONG/ABSENT CABLES</td>
<td>€ 0.36</td>
</tr>
<tr>
<td>M02 IMPROPER INSTALLATION</td>
<td>€ 0.45</td>
</tr>
<tr>
<td>INV BURNT SUPPLY CABLE OR SOCKET</td>
<td>€ 0.60</td>
</tr>
<tr>
<td>T1/MW/Broken Transformer</td>
<td>€ 0.66</td>
</tr>
<tr>
<td>INV INVERTER NOT OPERATING/Failure After Grid Fault</td>
<td>€ 0.67</td>
</tr>
<tr>
<td>M03 SHADING</td>
<td>€ 0.68</td>
</tr>
<tr>
<td>G08 DAMAGED CABLE</td>
<td>€ 0.69</td>
</tr>
<tr>
<td>G08 IMPROPER INSTALLATION</td>
<td>€ 0.69</td>
</tr>
<tr>
<td>T1/MW/Broken Transformer</td>
<td>€ 0.71</td>
</tr>
<tr>
<td>M03 SOILING</td>
<td>€ 0.95</td>
</tr>
<tr>
<td>INV FAN FAILS I RF & WM/FAN IC/FAIL</td>
<td>€ 1.17</td>
</tr>
<tr>
<td>INV WRONG INSTALLATION</td>
<td>€ 1.35</td>
</tr>
<tr>
<td>G08 BROKEN/BURNT CONNECTORS</td>
<td>€ 2.67</td>
</tr>
<tr>
<td>G08 WRONG/ABSENT CABLE CONNECTION</td>
<td>€ 3.93</td>
</tr>
</tbody>
</table>

€/kWp/year loss due to the failure
PRACTICAL EXAMPLE

Minimize risks. Maximize return.

20 Blocks 18 Strings 45 Modules

= 35'000 Connectors

Multiplying factors

- Plant design/technology (module, inverter).
- Connector(s) affected (module, string, inverter).
- Downtime per connector
- Price/fee in tariff per kWh
- Hourly rate service rate
- Number/price of connectors
- ...
PROJECT BANKABILITY

Small components. Big impact.
Impact on LCOE

Levelized Cost of Energy

\[\text{LCOE} = \frac{\text{CAPEX} + \text{OPEX}}{\text{Energy Yield}} \]

\[\text{Potential Savings} = 0.001\% \]

- service hours spare parts costs
- restriction costs due fire
- legal costs

lost kWh contact resistance
lost kWh downtime
Small components. Big impact.

Small components, low costs, low saving potential

- 0.003% for connectors
- Original Stäubli MC4 Connector
- Low quality Connectors 30% cheaper
- 0.001% potential savings

1. Quality vs. Low-end Product
2. Cross-Connection
3. Defective Installation/Crimping

High risk potential and impact, on the ROI of the PV plant

- lost kWh contact resistance
- lost kWh downtime
- service hours spare parts costs
- restoration costs due fire
- legal costs

VS.

9/11/2017 QRT - REI 2017
CORPORATE BANKABILITY

Your bankable partner

Original MC4 set standard
We set the industry standard due to the outstanding reliability of the MULTILAM technology.

Proven reliability

Customer service

Global presence
Our strong global network offers fast and local support through sales and service subsidiaries.

Original MC4 sets the standard

Less risk, higher return

Product availability

In-house production

Guarantee

Testing beyond the norm

Education

Company

Products

Service

125 years history
We are part of a strong technology leader in the fields of Connectors, Robotics and Textile.

125 years of history

Market leader

Multinational Swiss company

150GW PV capacity

Industrial know-how
Quality case
Batch module failure

Module failures found from an aircraft infrared (IR) inspection of a PV site identified diode failures which were strongly correlated to a serial number batch, indicating a likely serial defect. These results were used in a successful warranty claim, and demonstrate the value of early identification of faults using granular inspection tools.
Batch module failure

- Visible and IR inspection from a high-altitude aircraft revealed multiple system faults, which were causing output loss.
- This includes string failures as well as three distinct groups of diode failures.
Batch module failure
Batch module failure
Data from the inspection was processed with a validated post-processing algorithm and produced the following map of system faults:

- The string failures were found to be due to mis-matched connectors.
- The diode failures could be traced back to individual batches of modules, as the client had retained information on module serial numbers and their location within the array.
- This information formed the basis of a warranty claim, however, the module maker had gone out of business.
Questions

• What granularity of inspection is needed to detect these sorts of problems?
• What sort of analytical tools can be deployed to determine failures?
• What can be done regarding warranty issues with manufacturers that go out of business?
COMPANY SNAPSHOT

- **#1 Tracker Provider:**
 a) 30% global market share
 b) 10 GW sold, shipping, or installed
 c) 175 MW / week capacity

- Scale enables *Innovation & Quality*

- Indep. subsidiary of Flex ($25B);
 200K staff, 100 manufacturing sites

- Offices: US, Mexico, Chile, Australia, China, Spain, India

- PV + Storage: *NX Fusion Plus*
DESIGNED FROM THE GROUND UP FOR BEST IN CLASS RELIABILITY

• “Boltless” fastening ensures maintenance free tracking (prevent loosening & re-torquing over time)
• Ground up – keep critical components away from mother nature; safe, clean, productive
• Patented design “balances” panel loads - reduces motor and gear wear with less than 1A needed to drive a row
• Rigorous design and testing of components with leading labs to ensure they withstand site specific conditions
• Quality built in and measured through the manufacturing path with 3rd party inspections to ensure conformance. All suppliers ISO certified and audited
STRONG PARTNERSHIPS BUILD BETTER PRODUCTS

Continual Improvement through Customer feedback & Connectivity:

• Re-engineered dampers to provide >2X dampening effect on each row
• Sealed our motors, controllers, and slew gears for life – eliminating scheduled maintenance
• We have a team focus for evaluating every customer return for root cause and corrective actions and product improvement

Best-in-Class for Quality

• We are driving to be 6 Sigma in everything
• We train our 3rd party installers to ensure installation quality with PowerworX Academy
• We provide commissioning experts on site
• We are continually evaluating maintenance costs and failure rates to achieve >30 year life.
DESIGN FOR BIDIRECTIONAL COMMUNICATIONS

Early warning systems through smart monitoring and automation of each row

Scheduled Maintenance
- Axis Speed
- Motor Current

Position: 29.4°
Target Angle: 30.0°

Motor Current Peak (Amp) 1.5
DESIGN FOR INDEPENDENCE

NX systems are designed for rugged environments, in a distributed system, that has “intelligent” monitoring

Independent rows enable order-of-magnitude higher row uptime and system performance

“Cleaning mode” lowers OPEX with to face-to-face cleaning feature for faster panel & vegetation management
DESIGN PROACTIVELY – NEVER SATISFIED

30+ year project service life

- Production improvements, continuous data analytics, and customer feedback
- Site management
- Predictive maintenance execution and act with speed
- System monitoring
- Long term asset management
- Knowledge transfer and installation training (e.g. PowerworX Academy, “golden row”)
DESIGNED FOR LIFETIME OF UNINTERRUPTED PRODUCTION

• Understand site issues pre-deployment
• Products and systems developed to withstand years of use in harsh conditions
• Simple component changes and bi-directional communication reduce ownership cost

Designed for rugged environments, this NEXTracker project site in Virginia survived Hurricane Matthew 2016

NEXTracker system in Idaho survives extreme flood in Idaho 2015
For a 100MW site, O&M tracker costs is **17% less** on a per energy unit basis than fixed tilt.
Presented by:

Martin Rogers, VP Global Services, NEXTracker
www.NEXTracker.com
Twitter @NEXTracker

THANK YOU
IV

Presentation
Quantifying Risk: Benchmarking of Suppliers based on Risk Scoring of Quality Assurance Monitoring Data

Author: George Touloupas, Director of Technology & Quality
Date: 12 September 2017
Event: pv magazine Quality Roundtable SPI 2017
CEA has completed 16 GWs of solar projects since 2008, with client engagements in 30 countries and presence in 10 countries. Over 9 GW of on-site Quality Assurance assignments were performed during this period. Thousands of data points collected over years, backed by deep knowledge of risk mitigation, produce powerful statistics.
CEA performs quality assurance work before, during and after the production of PV modules, conducting three (3) main activities. Each defect or finding is assigned a risk score. Total scores are normalized per project or location, so that they can be compared.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
</table>
| Factory Audit (FA) | • A team of engineers audits a factory location using a 1,000+ point checklist
 | • Every finding is recorded and classified according to its risk potential |
| Inline Production Monitoring (IPM) | • A team of engineers continuously monitors all stations of a factory location during the production of an order, using a 260+ point checklist
 | • Every finding is recorded and classified according to its risk potential |
| Pre-shipment Inspection (PSI) | • A team of engineers performs visual, EL and IV inspections to a sample lot of modules, according to a list of vetted quality criteria
 | • Every finding is recorded and classified according to its risk potential |
A tree-shaped EL microcrack has higher risk potential than a backsheat dent, and this in turn is riskier than a frame scratch defect. In CEA's scoring system, the EL defect will receive a higher risk score than the other defects to reflect this difference.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Risk analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>World Class location/supplier</td>
<td>Very low quality risk</td>
</tr>
<tr>
<td>A</td>
<td>Good location/supplier</td>
<td>Low quality risk</td>
</tr>
<tr>
<td>B</td>
<td>Average location/supplier</td>
<td>Average quality risk</td>
</tr>
<tr>
<td>C</td>
<td>Basic location/supplier</td>
<td>Increased quality risk</td>
</tr>
<tr>
<td>D</td>
<td>Risky location/supplier</td>
<td>Very high quality risk</td>
</tr>
</tbody>
</table>
Supplier 09 (SUP 09), was audited in various locations, and we can also see individual scores for workshops 1 – 9 of Location 38 (LOC 38). In the chart, we can see that Supplier 09 has an A grade in location 39 (‘C’), which is, interestingly enough, an overseas OEM location not owned by the supplier. Even in the same location 38, grades can vary widely, with workshop 38-02 (‘A’) having an alarming D grade, but workshop 38-09 having an average B grade (‘B’). Location 47 is a BNEF tier supplier, but the D grade, accompanied by a very high score, means that serious improvements should be applied before beginning production.
Supplier 06’s location grades range from a good A to a high risk D grade (‘A’). It’s interesting to note that location 28 does not have the high degree of automation of the other two locations. For supplier 11 (‘B’), there is a dramatic difference in grading. Location 41, an OEM location, has a good A score, but location 42, despite being the supplier’s own location, has a very risky D grade.
Supplier 04 (‘A’) shows a yearly improvement trend, moving from a B grade to an A grade within three years, which is a very positive result, consistent with industry goals. On the other hand, supplier 09 (‘B’), showed an improvement from B grade to an A grade from 2014 to 2016, but then plunged to a C grade in 2017. Supplier 09 ash experienced very high demand in H1 and this created a lot of pressure on the production lines. However, since this grade is based on H1 projects, it will be interesting to monitor the supplier’s progress over the course of 2017. Supplier 14 had an average B grade in 2015, but jumped to a very high risk score and a D grade in 2016. This supplier was plagued by financial issues in 2016, and this seriously – and visibly – affected its ability to produce high quality PV modules.
The three different facets of CEA's quality assurance oversight complement each other, as they focus on different areas of risk. A Factory Audit is a snapshot, and is therefore not fully representative of the ability of a supplier to produce good quality modules. A good FA score is a great starting point, but problems may arise in production. Such production problems will reflect in a bad IPM score. However, the same project may have a good PSI score, because the supplier redirects the lower grade modules to other clients and doesn't submit them for PSI. The 3 different scores of Supplier 04 underline this case.
The SBP is accessible via an interactive online platform, with powerful data visualization capabilities. The data can be filtered in many different ways, and the map gives insights in the logistics of supply.
THANK YOU
Quality Roundtable at Solar Power International 2017

Quality first: an industry-wide discussion of the path forward
Interactive panel discussion

Mark Skidmore, TUV
Ken Boyce, UL
Jim Crimmins, CFV Solar test lab
George Touloupas, CEA
Mike Belikoff, Strata Solar