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Vaisala ‘ Measurement, Assessment, Forecasting

-+ 2013 acquisitions to serve the 3 I I ER
renewable energy marketplace ®

& Solar resource feaS|b|I|ty studies 1800 (42 GW), 6 contlnents

d Due diligence assessments 5GW

DD Wind and solar site specific forecasting 18GW, 4 continents
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Project Development Road Map

} s

Project Design

What is the
expected
generation of
my solar
project?

Due Diligence

What are my
long-term
production

Location
Prospecting

Where is the
best place to

estimates for
financing?

Finalize
project design and
secure financing
and land

build a solar
project?

Confirm that land
can be used for the
project and that an
off-taker is available

Create initial energy
production estimates
and decide on
technology / basic
project design
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Construction

How do |
guarantee a
quality project?

Verify that all
provisions of EPC
contract is met and
that independently

verifiable performance

metrics are met

| VAISALA

O¢ 3TIER

by Yaisala

by Vaisala



Solar Energy Assessment Process
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The Difference Between Losses and
Uncertainty

Losses Uncertainty

* The difference between ideal * The measure of how certain we
production and actual are a project will perform the
production way we say it will

= Some are inherent in the = Usually expressed as a ranged
system (ex: atmospheric estimate (ex: +/- 5.6%)
losses) = Used to create the Probability

= Some can be reduced with of Exceedance Values for
good design (ex: wiring losses)  project financing

* [ncluded in your “net energy” = Can be influenced by project
values development choices
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Where Do Losses Come From?

Some losses that
are calculated in the
energy modeling
process that are
inherent in the
location or system.

Some losses that
can be influenced by
plant design and
maintenance plans
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Loss Factors

Irradiance

Global Incident in Collector plane
Far shadings / Horizon

Near shadings: Irradiance loss
IAM Factor on global

Soiling loss factor

Snow loss factor

183 %
-03%
-2.8%
-2.0 %
-1.0 %
0.0 %

Array Operating Losses

PV Loss due to irradiance level

PV Loss due to temperature

Spectral loss

Shadings: Electrical Loss according to strings
Module quality loss

LID - Initial light induced degradation
Mismatch loss

Ohmic wiring loss

Inverter efficiency loss during operation
Inverter Loss over nominal inverter power
Inverter Loss due to power threshold
Inverter Loss over nominal inverter voltage
Inverter Loss due to voltage threshold
Auxiliaries

AC ohmic loss

External transformer

Transmission loss

Curtailment loss

Unavailability

0.0 %
-8.6 %
0.0 %
0.0 %
0.8 %
-1.5%
-0.5%
-1.1%
-1.3%
0.0 %
0.0 %
0.0 %
0.0 %
-0.8 %
-0.6 %
-0.8 %
-1.0 %
0.0 %
-2.0 %
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Technology Selection Considerations

Modules Mounting

1. Monocrystalline 1. Fixed Mount
- Expensive but rugged * Cheapest but least

and efficient efficient
2. Polycrystalline « Most adaptable to
« A good choice different types of terrain

3. Thin film (including CIGS) 2. 1-axis tracking
« Cheapest « ~11-25% more energy

« Requires the largest than fixed depending on

amount of land area latitude
* Requires more land and

moderate slopes
3. 2-axis tracking
« Most expensive option
« ~35-40% more energy
than fixed
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Cross-Shading Optimization

Tilted Module:
tiltangle: B
width: w
o THE Shadow Angle \
«
h i 9
B rv B

i

Module Row Distance: d

= What happens when distance between rows is small or the
sun is low in the sky. Also called ground cover ratio.

= Happens for certain sun angles, tilt angles, and row pitches.
= Minimizing cross-shading is a major aspect of plant layout.
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Clipping, Overbuilds, and DC/AC Ratio

= Both the AC and DC sides of the plant have losses

= By increasing the ratio of DC to AC (increasing the number of modules,
without changing the inverter capacity) we can make sure that the plant
outputs at rated capacity over a larger part of the day.

= |n utility-scale plants, the DC/AC ratio varies from about 1.05 to about 1.40.

= The higher the DC/AC ratio the more days of the year the plant will hit rated
capacity, and the plant will produce at rated capacity during more hours of the
day.

= High DC/AC ratio, or overbuild factor, imply a lot of clipping.

= Clipping and high overbuilds do no harm, but they do mean that money is
used to purchase DC capacity which is only occasionally used.
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Clipping Losses

= Modern inverters clip at
their maximum rated
capacity.

= Clipping is when DC output
exceeding inverter capacity
Is then shed and only the
max AC capacity is fed to
the grid.

= All plants will experience
clipping to some level as

determined by the DC/AC
ratio
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Soiling Losses

15% soiled <1% soiled
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1-Year 10-Year 25-Year

Resource
Climate
Power Modeling

Aging
Total Uncertainty
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Defining Uncertainty

Typical Uncertainty Distribution
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= PXX values defined to be the probability that average generation will exceed
the specified generation over the associated time period and are the basis for
many financing decisions
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Two Ways to Calculate P-Values

TMY Distribution 17+ Year Distribution

= When using a TMY to calculate = When using the long-term time
energy production you have to series you do not have to assume
assume a standard distribution the distribution you set the curve
around the P50 because that’s all based on the actual energy
you have production modeled

= We set the distribution primarily = Because we do not have 20+ years
based on the resource variability as of resource data to model with we
that is the largest driver of energy use a Kernel Density statistical
variability method to set the distribution around

= The p-values are chosen using a the modeled data to get 20 year P90
standard deviation values

The P50’s are the same with both methods but the P90’s often vary by 1%
but can be as high as 3-5% at resource variable locations
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Comparing year-1 yield distributions
from TMY and full time series
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= KDE distributions tend to have fatter tails
= KDE distributions often have different shapes than normal distributions, so
not possible to match these up completely
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Resource Uncertainty

High Risk

Solar Time Series Viewer: Solar Time Series Tools

Latitude: -23.744  Longitude: -69.100

LINKE1.0 Long-term Mean GHI: 296.0 W m-2
LINKE1.1 Long-term Mean GHI: 287.6 W m-2
LINKE1.2 Long-term Mean GHI: 290.9 W m-2
REST2MACC Long-term Mean GHI: 285.7 W m-2
REST2MERRAZ2 Long-term Mean GHI: 285.5 W m-2
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Low Risk

Solar Time Series Viewer: Solar Time Series Tools

Latitude: -30.239  Longitude: -66.903

LINKE1.0 Long-term Mean GHI: 223.9 W m-2
LINKE1.1 Long-term Mean GHI: 223.7 W m-2
LINKE1.2 Long-term Mean GHI: 228.5 W m-2
REST2MACC Long-term Mean GHI: 228.9 W m-2
REST2MERRAZ2 Long-term Mean GHI: 225.4 W m-2
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Solar Measurement Station

Im horizontal'sensor bod
Measurement System

Nomad 3 data logger Wlth GPRS/3G data
transfer, ModBus TCP/IP SCADA '

20W solar panel and 12Ah battery
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How Does Vaisala Combine Ground
Observations and Modelled Data?

Global Horizontal Irradiance

580 4 — Ground
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Months of
Observations

0 months

4 months

8 months

12 months
18 months

24 months
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Climate Uncertainty

3TIER SUBSCRIPTIONS
Map Controller Solar Time Series Viewer: Solar Time Series Tools

|Address or lat, lon coordinates || Locate « Latitude: 0.642 Longitude: 114.204

e Vaisala 1.0 Long-term Mean GH!: 210.7 W m-2

* Vaisala 1.1 Long-term Mean GHI: 211.1 W m-2

e Vaisala 1.2 Long-term Mean GHI: 209.9 W m-2

. Va>sala 2 O Long-term Mean GHI: 203.4 W m-2
1 Long-term Mean GH!: 209.6 W m-2
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Lorosa'e Rpstoresby ¢ Vaisala 2.0 the Vaisala Solar Datasets.
e V A
Darwin Next Steps?
Let 3TIER incorporate onsite observations into your
2 analysis
Data source: ® 3TIER, l‘l/sc ¢ Long-Term support@
Location Name:
Solar GHI Overlay: kWhim#/day
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Climate Change

Average SST Anomalies
19 JUL 2015 - 15 AUG 2015

Mid-Jun 2015 Plume of Model ENSO Predictions
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Standardized Departure
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Power Modeling Uncertainty
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Project: Mew Projec LElLI-
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The Project includes mainly the geographic SITE definition, and the azzociated METED hourly file i |
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Technology Modeling Uncertainty

Unusual technology or location
choices carry greater uncertainty

which may or may not be offset by
gains in energy or cost reductions
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Aging Uncertainty From
Long-term Degradation

= Solar cell aging is known to cause 25.00
a decrease in output with age.

= The primary mechanism is
repeated heating and cooling
cycles which cause cracks in the
metal leads as well as in the semi-
conductor material.

- EStI m ates fo r th e rate Of YearYearYearYearYearYearYearYearYearYearYearYearYearYearYear
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10.00
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8

degradatlonvary between 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
manufacturers. Vaisala evaluates

the manufacturer warranty claims

and assumes the degradation will

not exceed that value.
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Takeaways

Approaching the project development process with a view to
the end goal will help you reach it

A high quality project that will meet performance goals

< _al
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Approaching the project development process with a view to
the end goal will help you reach it

= A high quality project that will meet performance goals

Get the project financed by reducing uncertainty
= Spend less time and money chasing the wrong problem
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Takeaways

Approaching the project development process with a view to
the end goal will help you reach it

A high quality project that will meet performance goals

Get the project financed by reducing uncertainty
Spend less time and money chasing the wrong problem

Using high quality data and analytics from the beginning
means less rework

It's less expensive than you think to gain insight into your project
or portfolio!

r— T— il
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For product information or trial
access to the online tools
contact: energy@vaisala.com

Questions about the content
shown here contact:
gwendalyn.bender@vaisala.com
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