

BELECTRIC Next Gen Utility-scale PV Power 1,500V DC Technology

Webinar PV Magazine Bernhard Beck, BELECTRIC

2017-11-06

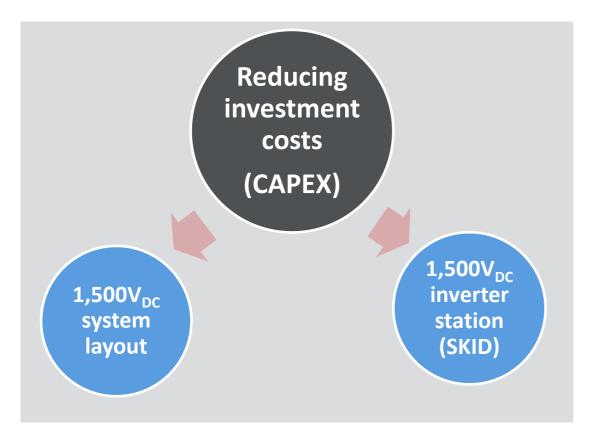
PIONEERING 1,500V ARCHITECTURE

Longest Innovation track record in PV power plant business:

- → Developing high voltage DC cabling system:
 - 1st 700+V $_{\rm DC}$ in 2003 \rightarrow 1,100+V $_{\rm DC}$ in 2010
 - 1st 1,500V $_{\rm DC}$ PV power plant in 2012
 - 1st 1,500V_{DC} rooftop system in 2015
- → <u>Reducing raw materials:</u>
 - 1st generation central inverter (2004) = 40tons/MVA
 - 2nd generation central inverter (2008) = 11tons/MVA
 - 3rd generation SKID inverter (2012) = 7tons/MVA

1,500 VOLT IS THE NEW STANDARD

BELECTRIC'S HIGH EFFICIENT 1,500V_{DC} ARCHITECTURE ENABLES A REDUCTION OF 30% OF eBOS COMPONENTS


→ 30% lower logistics cost for eBOS transport

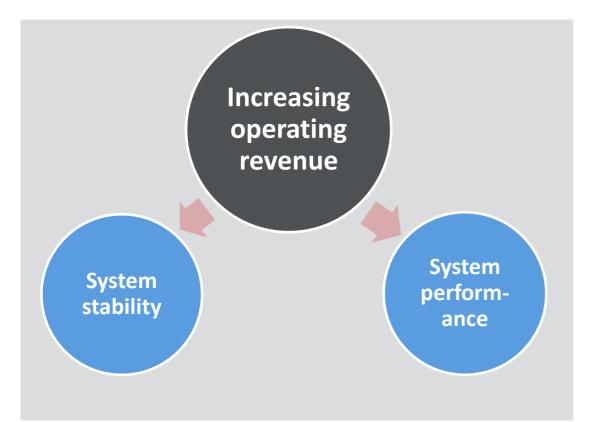
→ 30% lower labor cost for eBOS installation

→ 30% lower maintenance cost related to eBOS

COST REDUCTIONS AND SCALE EFFICIENCIES

BELECTRIC's high efficient DC system

- → Longer string length = up to 50% more panels can be interconnected
- → Less DC eBoS (wiring, connections, combiner boxes)
- → Less labor costs and faster project realization



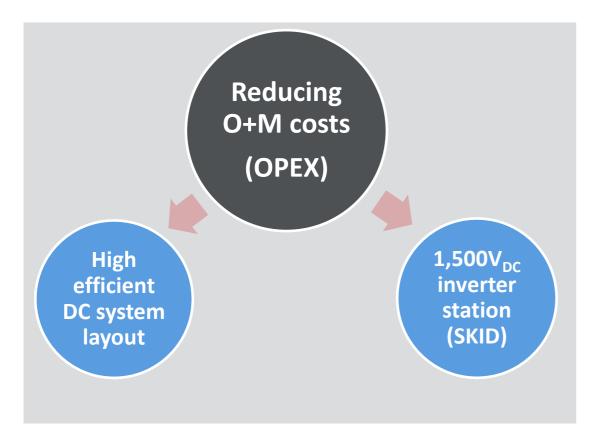
BELECTRIC[®]

Inverter stations

- \rightarrow Reducing amount of inverter stations
- \rightarrow Lightweight, easy to handle on site
- \rightarrow Less AC system costs

INCREASING OPERATION ELECTRICITY YIELD

Better long-time system stability:


- Less DC components
 → less risk for system faults
- Proved <u>1,500V_{DC} wiring harness</u>
- Optional 1,500V_{DC} <u>Anti PID device</u> reduces PV panel degradation

Higher system performance:

- High voltage enables <u>higher inverter power</u>
- Less <u>electrical power loss</u> due to high voltage level and less junction points

REDUCING OPERATION AND MAINTENANCE COSTS

DC system:

Compared to typical PV power plants, less DC cabling and inverters have to be controlled

 \rightarrow Reduced <u>maintenance time</u>

 \rightarrow Less downtimes \rightarrow <u>Higher energy yield</u>

→ BELECTRIC's standardized inverter SKID setup safes long-term operation

THE TECHNOLOGY CHALLENGE

- Lack of experience
- New requirements for power plant engineering and construction
- Availability of reliable 1,500V_{DC} components (product engineering, mass production, quality conformance)
- Staff training for construction and service teams

The solution is provided by good partnerships:

- Module supplier in general and technical collaboration
- Inverter stations (e.g. GE, SMA)
- DC cabling and substructure (Jurchen Technology)
- DC combiner boxes and float controller (PADCON)

BELECTRIC COMPONENTS – 1,500V CERTIFIED

From PV panel to inverter, all components are approved to operate at 1,500V voltage level (DC):

Modules: Latest generation, restricted to a maximum system voltage of 1,500V

BoS Electrical System:

BELECTRIC has developed all components for a maximum system voltage of 1,500V

Inverter: Latest generation, restricted to a maximum system voltage of 1,500V

1,500V

PPROVFD

1,500V

BELECTRIC COMPONENTS - 1500V CERTIFIED

The DC cables are the "life veins" of every PV system. They have to defy wind and weather conditions for many years and reliably safeguard the electricity yields.

- Wiring harness solutions reduce / eliminate the use of DC combiner boxes
- Wiring harness cabling system saves up to 50% solar cable than typical single array solutions
- High quality connection points, 1,500V DC capability and less plug connections reduce DC power loss
- Rock solid quality ensures decades long operation independent to climatic conditions
- Efficient and easy to integrate modular system with extensive accessories like 1,500V inline fuses and diodes

1,500V_{DC} - IT'S REALITY SINCE 2012

Fact #1:

Since 2012 BELECTRIC has commissioned over 150MWp of 1,500V_{DC} utility-grade PV power plants AND numerous multi-megawatt projects in different countries are in pipeline.

Fact #2:

From module to substructure to inverter, all components are available and approved to operate at $1,500V_{DC}$.

Fact #3: The availability of 1,500V approved PV modules is constantly rising.

BELECTRIC References: Solar Power Plants and Energy Storage

Location:	Landmead, UK
Nominal Power:	45.8MWp
Commissioned:	2014
Power Plant:	Solar PV (Double Base, First Solar)
DC System type:	1,500V Float Control
DC Voltage Range:	-500+1000V

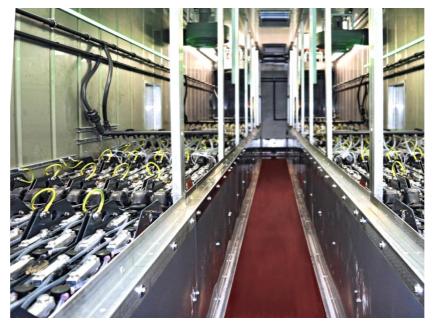
Location:	Barcaldine, Australia
Nominal Power:	11MWp
Commissioned:	2017
Power Plant:	Solar PV based on PEG System
DC System type:	1,500V Float Control System
DC Voltage Range:	-500+1000V

● $BELECTRIC^{\circ}$ More information at <u>www.belectric.com</u> → Solar Power Plants → PEG

Location:	Suhlendorf, Germany
Nominal Power:	750kWp
Commissioned:	2017
Power Plant:	Solar PV based on PEG System
DC System type:	1,500V Float Control
DC Valtaga Danga	
DC Voltage Range:	-500+1000V

More information at <u>www.belectric.com</u> \rightarrow Solar Power Plants \rightarrow PEG

Location:	Berlin Marienfelde, Germany
Nominal Power:	621kWp
Commissioned:	2015
Power Plant:	Solar PV - CHP Hybrid ² power
DC System Type:	1,500V Float Control
DC Voltage Range:	-500+1000V



REFERENCES: ENERGY BUFFER UNIT

Location:	Alt Daber, Germany
Nominal Capacity:	2.0MWh
Primary Reserve:	1.3MW
Commissioned:	2014
DC System Type:	1,500V

REFERENCES: ENERGY BUFFER UNIT

Location:

Nominal Capacity:

Commissioned:

DC System Type:

Kolitzheim, Germany 924kWh (C5) 2016

1,500V

BELECTRIC – Powering the Future

BELECTRIC - Powering the Future

More information at www.belectric.com