1,500V PV PROJECTS WITH SMA

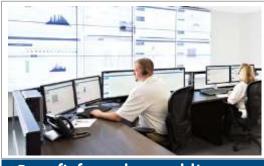
INCREASED PROFITABILITY, RELIABLE ENERGY SUPPLY

Attilio Bragheri, Head of Engineering and Project Management South Europe

SMA Solar Technology AG

35 YEARS EXPERIENCE IN PV SYSTEM TECHNOLOGY

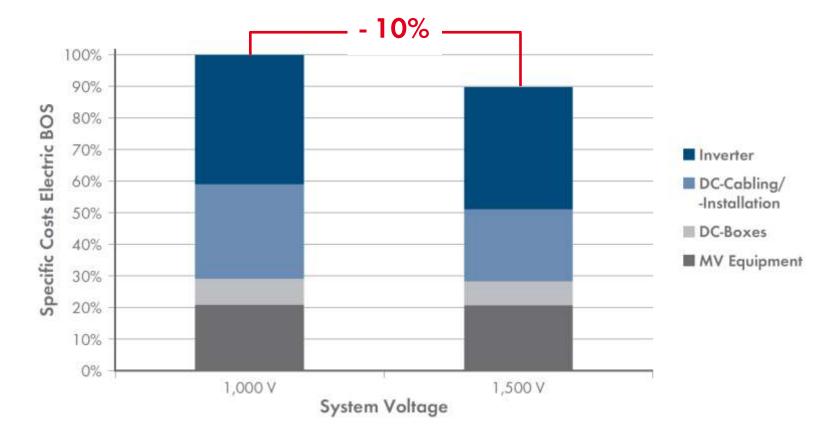
Rely on system solutions from the market leader


Count on a track record of 55GW installed base

Profit from reliable performance and maximum yields

Count on German Engineering & rigorous testing

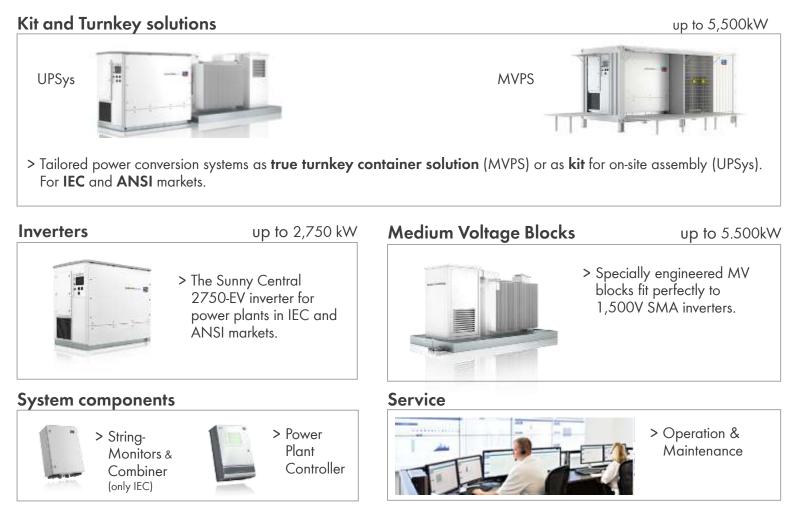
Benefit from the world's most comprehensive Service portfolio


bankability

> SMA is the world's most experienced inverter provider and system solution expert

1,500V DC SYSTEMS **REDUCE COSTS** OF UTILITY SCALE PV

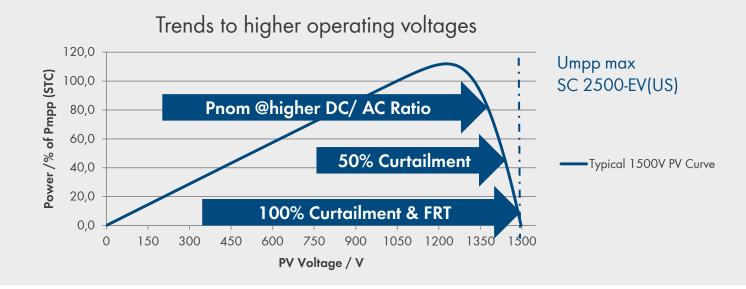
Electrical balance of system costs are up to 10% lower when implementing 1,500 V technology.*



> The 1500 V technology provides cost savings up to 10 %

* Evaluation based on analysis of 4 major electrical BOS cost components. Excluding panels, mounting structure, tracker etc. Calculation should be used as an example, cost savings highly depend on project conditions.

SMA SYSTEM SOLUTIONS FOR 1,500V PV PROJECTS



> SMA offers solutions for the entire value chain from DC to the MV grid

HIGHER AVAILABILITY WITH SUPERIOR STACK DESIGN

- > PV Sites are operating more frequently at higher DC Voltages closer to Open Circuit Voltage (1500 Vdc)
- > Reasons: Higher DC/AC Ratio (Supersizing), Curtailment Commands, higher Module Fill Factors and Fault Ride Through Events (FRT)
- > Operating at higher DC Voltages impacts the stack lifetime

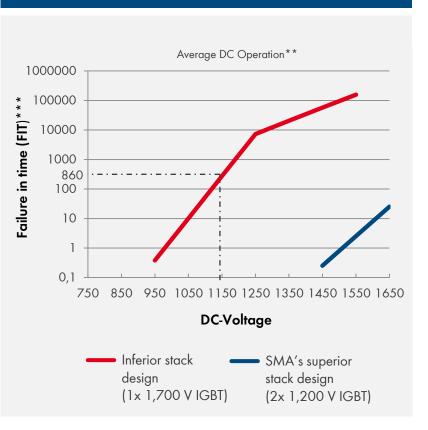
> In current and future plant designs sufficient Design Reserve becomes crucial

HIGHER AVAILABILITY THROUGH SUPERIOR STACK DESIGN @1500 VDC

38% SMA Design Reserve* /S 2x 1,200 V IGBT's 100% Curtailment capability > > Continuous operation at 1500 V possible > Optimized for a 25 year lifetime and lowest failure rates

12% "standard" Design Reserve inverter XY 1x 1,700 V IGBT's > Insufficient curtailment capability > Insufficient Design Reserve > higher failure rate

> The Sunny Central 2500/2750-EV (US) guaranties lowest failure rates with it's high Design Reserve


SMA STACK DESIGN LEADS TO BETTER PERFORMANCE

Sufficient Design Reserve @ Open Circuit Voltage (1500 V) is the key to reliable operation

- Example: Assuming average operation voltage from 1150Vdc (at sea level)
 - > 1x 1700 V IGBT's = 1 Inverter will fail 3 times in 20 years*
 - > 2x 1200 V IGBT's = **0** failures 20 years*
- > At 2000m (a.s.l.) Cosmic Radiation increases at least by factor 5
 - > 1x 1700 V IGBT's = 1 Inverter will fail 15 times in 20 years*
 - > 2x 1200 V IGBT's = 0 failures 20 years*

IGBT failures due to Cosmic Radiation

> True 1500V Systems cannot be realized with 1700V IGBT's

- * Only related to Cosmic Radiation, Cosmic Radiation is the effect of irradiance on elements
- ** Considering 150% PV field supersizing and curtailment commands
- *** 1 FIT = One failure in 1 billion operating hours

- >1500V PV plant design provides BOS cost savings up to 10 %
- >SMA has a full 1500V portfolio.
- >SMA Turnkey solution up to 5.5 MWac available.
- >Inverter technology needs engineered key components (e.g. IGBTs) to exploit
 - the full advantages of PV plant at 1500V.

SOCIAL MEDIA www.SMA.de/Newsroom

