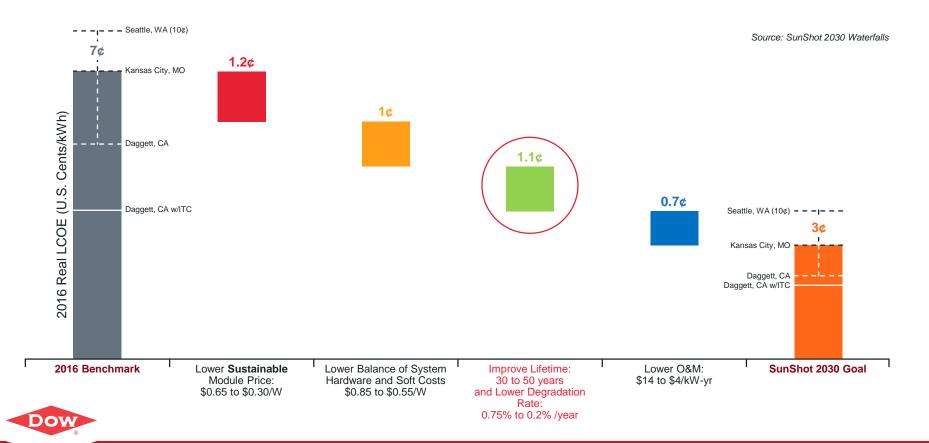



# The Value of Durable Materials in Maximizing Your Investment in Solar Energy

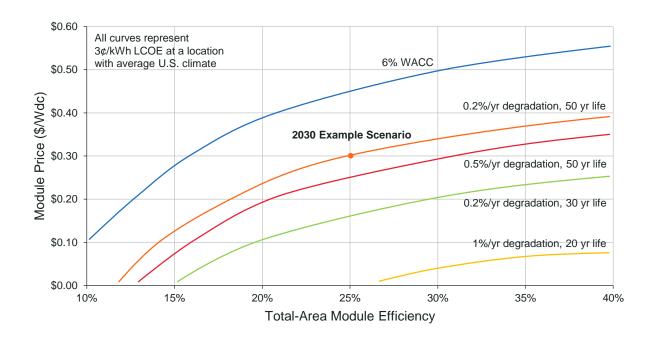
Dr Brian Habersberger

Dow Chemical


## Module lifetime and failures






IEA: "Review of Failures of Photovoltaic Modules", Task 13 external final report, IEA-PVPS, March 2014

## DOE Sunshot Initiative: Pathways to grid price parity





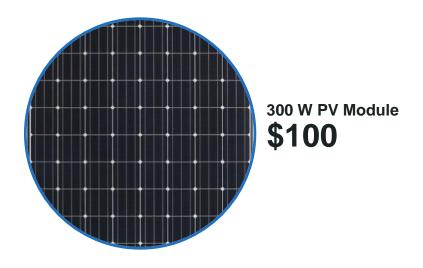
## **Durability is a Necessity**

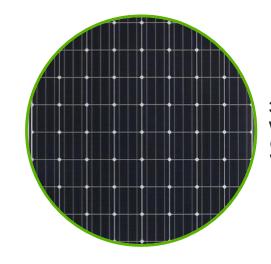


With a system lifetime of 20 years and a degradation rate of 1%/year, even a free module would need to have an efficiency of at least 27% in order to reach the SunShot goal.

In other words: module durability is not a nice-to-have, it is necessary.




## How to financially evaluate durability

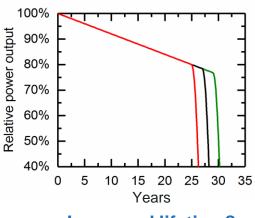

How much additional energy must durable materials yield in order to justify their cost?

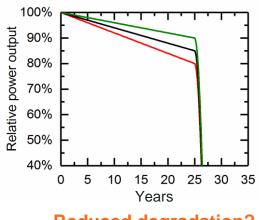
LCOE = 
$$\frac{PC - CBI - PVPBI}{\sum_{n=1}^{N} \frac{LP_n}{(1+d)^n} - \sum_{n=1}^{N} \frac{LP_n}{(1+d)^n}} * ETR + \sum_{n=1}^{N} \frac{OM_n}{(1+d)^n}}{\sum_{n=1}^{N} \frac{EO_n}{(1+d)^n}}$$

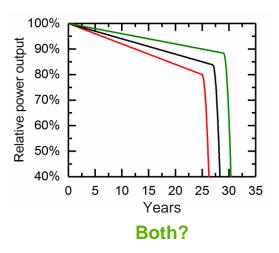


## Let's go shopping for PV modules...







300 W PV Module with "durable materials" \$105



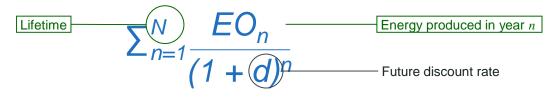

## How to model PV performance scenarios

#### What reduction in LCOE can be accomplished by...








Increased lifetime?



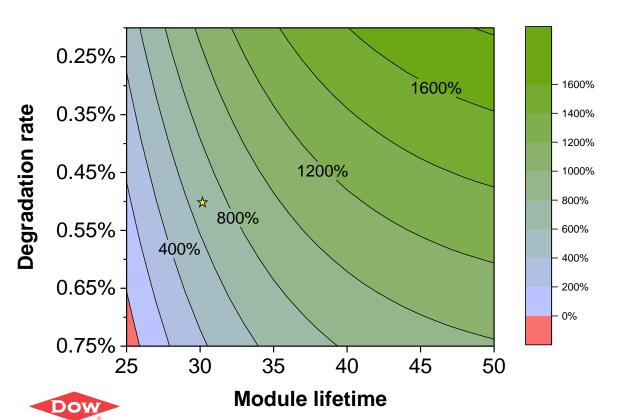


## **Durability value calculation**

## Total costs over lifetime



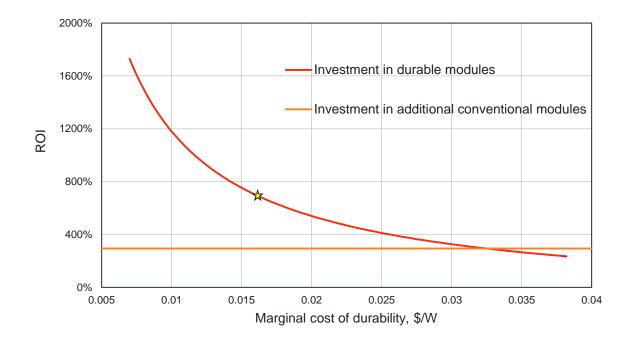
# Model assumptions (borrowed from DOE SunShot):


- Default module: 25 year lifetime, 0.75% annual degradation rate
- Discount rate: 9.5%
- Sun-hours per year: 1860 (sunny climate)

#### Additional assumption:

 Cost of performance improvement: 0.016 \$/W



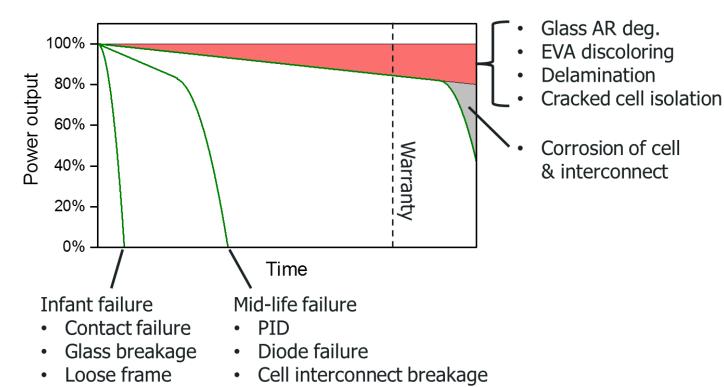

## Significant ROI potential in this scenario



Value of additional energy yield from Durable PV module vs the added cost of such a module.

This chart is calculated at fixed marginal durability cost (0.016 \$/W); for the point marked with the star, we will investigate as a function of cost.

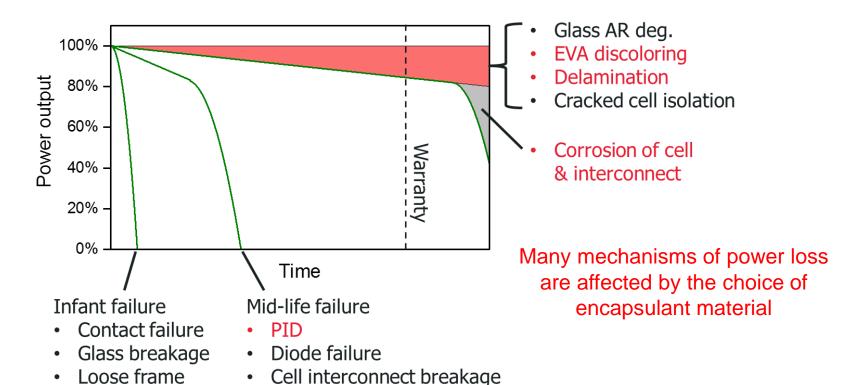
## Significant ROI potential in this scenario




|              | Degradation rate | Lifetime |
|--------------|------------------|----------|
| Conventional | 0.75%/yr         | 25 yr    |
| Durable      | 0.5%/yr          | 30 yr    |

- Investment \$ could be used to buy additional conventional modules
- ROI of durable modules vs. spending the same amount on additional conventional

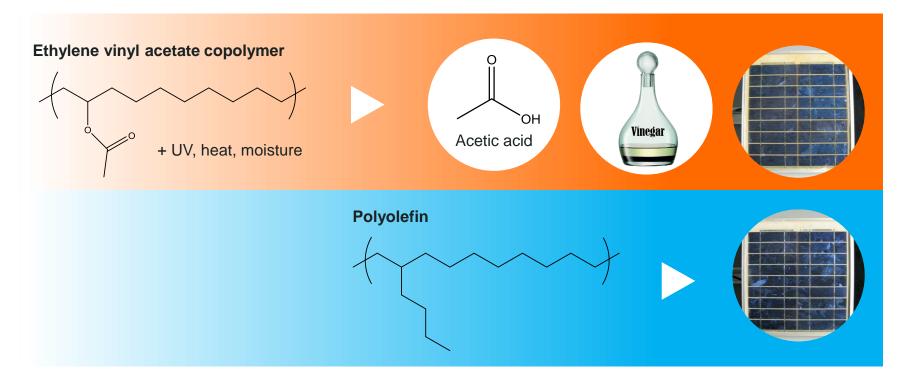



## Module lifetime and failures





IEA: "Review of Failures of Photovoltaic Modules", Task 13 external final report, IEA-PVPS, March 2014


#### Module lifetime and failures





IEA: "Review of Failures of Photovoltaic Modules", Task 13 external final report, IEA-PVPS, March 2014

# **EVA** degradation yields corrosive byproducts





## **Encapsulant durability: Key properties**

#### **Key Properties**

Electric resistivity

Water vapor transmission rate

Acetic acid formation

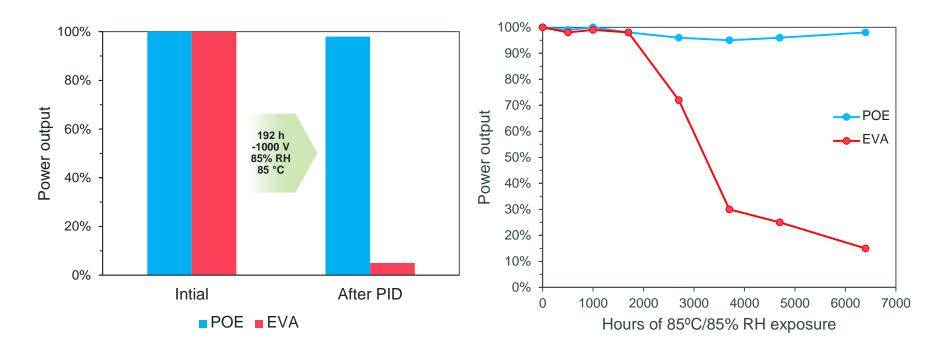
#### Problems with EVA

Low resistivity leads to PID and other electrochemical corrosion

Moisture ingress can lead to corrosion

Acid leads to corrosion

#### Benefits of POE


POE has up to 1000x higher resistivity, completely prevents PID

POE has 10x lower MVTR

POE does not form corrosive byproducts



## POEs consistently outperform EVA in accelerated stress testing





## Polyolefin durability is key in many applications

Simple hydrocarbon chemistry and flexible formulation allow for decades of performance in variety of applications









## References in which POE outperforms EVA

- Bae, S.; Oh, W.; Lee, K. D.; Kim, S.; Kim, H.; Park, N.; Chan, S. I.; Park, S.; Kang, Y.; Lee, H. S. Energy Science & Engineering 2017, 5, 30.
- Barbato, M.; Meneghini, M.; Cester, A.; Barbato, A.; Meneghesso, G.; Tavernaro, G.; Rossetto, M. In Reliability Physics Symposium (IRPS), 2016 IEEE International; IEEE: 2016, p PV.
- Berghold, J.; Koch, S.; Frohmann, B.; Hacke, P.; Grunow, P. In Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th; IEEE: 2014, p 1987.
- Cattaneo, G.; Faes, A.; Li, H.-Y.; Galliano, F.; Gragert, M.; Yao, Y.; Grischke, R.; Söderström, T.; Despeisse, M.; Ballif, C. Photovoltaics International 2015, 3, 1.
- Cattaneo, G.; Galliano, F.; Chapuis, V.; Li, H.-Y.; Schlumpf, C.; Faes, A.; Söderström, T.; Yao, Y.; Grischke, R.; Gragert, M.
- Halm, A.; Schneider, A.; Mihailetchi, V.; Libal, J.; Aulehla, S.; Galbiati, G.; Roescu, R.; Comparotto, C.; Kopecek, R.; Peter, K. In Photovoltaic Specialists Conference (PVSC), 2013 IEEE 39th; IEEE: 2013, p 2368.
- Kapur, J.; Norwood, J. L.; Cwalina, C. D. In Photovoltaic Specialists Conference (PVSC), 2013 IEEE 39th; IEEE: 2013, p 3020.
- Kempe, M. Photovoltaic Solar Energy: From Fundamentals to Applications 2017, 478.
- Kempe, M. D.; Miller, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.; Moseley, J. M.; Nobles, D. L.; Stika, K. M.; Brun, Y.; Samuels, S. L.; Shah, Q. A. Energy Science & Engineering 2016, 4, 40.
- López-Escalante, M.; Caballero, L. J.; Martín, F.; Gabás, M.; Cuevas, A.; Ramos-Barrado, J. Solar Energy Materials and Solar Cells 2016, 144, 691.
- Luo, W.; Khoo, Y. S.; Hacke, P.; Naumann, V.; Lausch, D.; Harvey, S. P.; Singh, J. P.; Chai, J.; Wang, Y.; Aberle, A. G. Energy & Environmental Science 2017, 10, 43.
- Masuda, A.; Hara, Y.; Jonai, S. Japanese Journal of Applied Physics 2016, 55, 02BF10.
- Tanaka, R.; Zenkoh, H. In Photovoltaic Module Rel. Workshop. 2015.



### How do warranties reflect value of durable materials?

Module manufacturers express confidence in durability through their warranties.

Typical warranty for modules made with conventional materials:

Average warrantied degradation rate among module manufacturers who disclose POE encapsulant:

0.70%/yr0.33%/yr



## Durability: A key part of maximizing your solar investment

- Module durability is a necessity
  - LCOE goals cannot be reached without it
- Investments in durability offer a significant ROI
  - Model your own durability-based LCOE scenario
- Polyolefin materials consistently outperform EVA in durability-related testing





# **ENGAGE™ PV Polyolefin Elastomers**

- World's largest polyolefin elastomers producer, with broadest portfolio in the industry
- Only producer with world-scale trains on three continents, new Asia plants start-up in 2016
- Unparalleled manufacturing, application development and market reach around the global
- Solution provider for Photovoltaic module encapsulation
- Since entering the global PV industry in 2012, Dow has grown to become the supplier of choice for POEs in PV encapsulant film.







