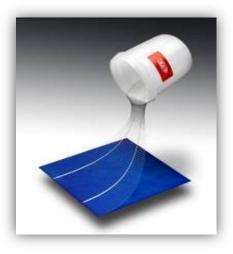


### **DuPont Photovoltaic Solutions**

Risk mitigation measures to help protect solar assets for the long-term

5 June 2018, PV Magazine webinar Dr. Lucie Garreau-iles, Technical Manager, EMEA DuPont Photovoltaic Solutions Lucie.garreau-iles@dupont.com

#### For over 40 years


our material innovations have led the photovoltaics industry forward, and helped our clients transform the power of the Sun into power for us all. Today we offer a portfolio of solutions that deliver **proven power and lasting value** over the long term. Whatever your material needs, you can count on quality DuPont Photovoltaic Solutions to deliver the performance, efficiency and value you require, day after day after day...





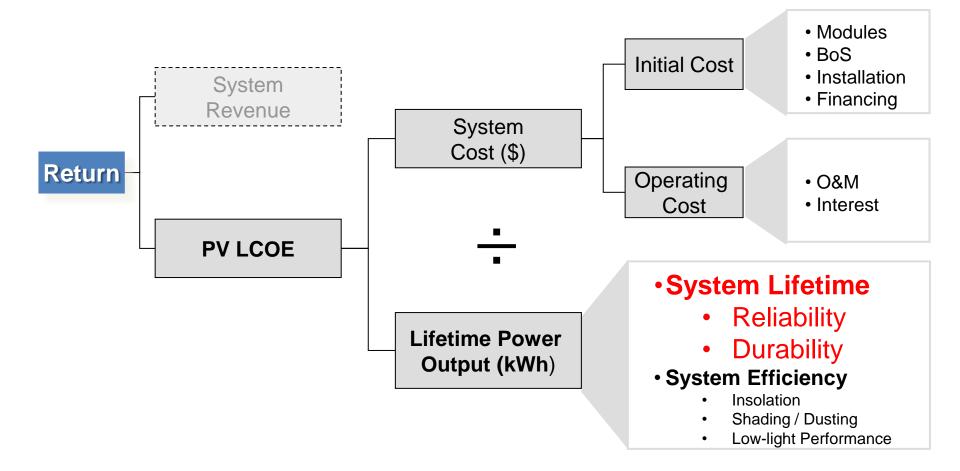
### **DuPont Photovoltaic Materials Portfolio**

DuPont<sup>™</sup> Solamet<sup>®</sup> Metallization Pastes



Driving higher energy conversion efficiency

DuPont<sup>™</sup> Tedlar<sup>®</sup> PVF Films for Backsheet




Protecting PV modules

Over 50% of panels installed in the field since 1975 contain DuPont materials



# Levelized Cost of Energy (LCOE)

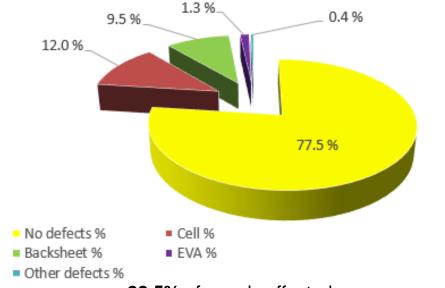


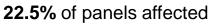


### The Backsheet is Critical for Protecting the PV Panel

#### **Stress Environment** Ultra Violet (UV) Transmitted Reflected Temperature Peak Cycling Moisture Humidity Precipitation Condensation **Inner Layer Corrosive Environment** • Atmospheric chemicals DANGE Ammonia **Outer Layer** CORROSIVI Marine environment **Physical Protection** Abrasion Impact

Frame Glass Encapsulant Solar Cells Encapsulant Backsheet Junction Box Backsheet structure Middle Layer


Backsheet must provide reliable electrical protection of module over the expected lifetime (and beyond)




# **Global DuPont Field Surveys (2017)**

- Surveyed: 286 Installations in North America, Europe & Asia Pacific
- Figures reported below: 45 module manufacturers, **1,047 MW** > 4.2 MM modules
- Range of exposure: from newly commissioned modules to 30 years in service
- From multiple climates





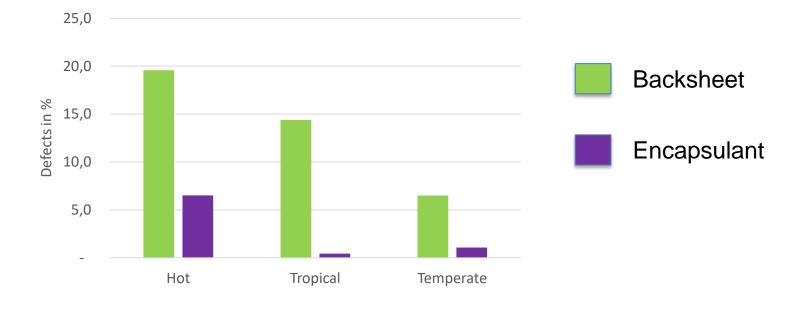


### Backsheet is one of the main components affected












**Source:** DuPont Field Module Program 2017 analysis **Note:** All percentage numbers are based on MW

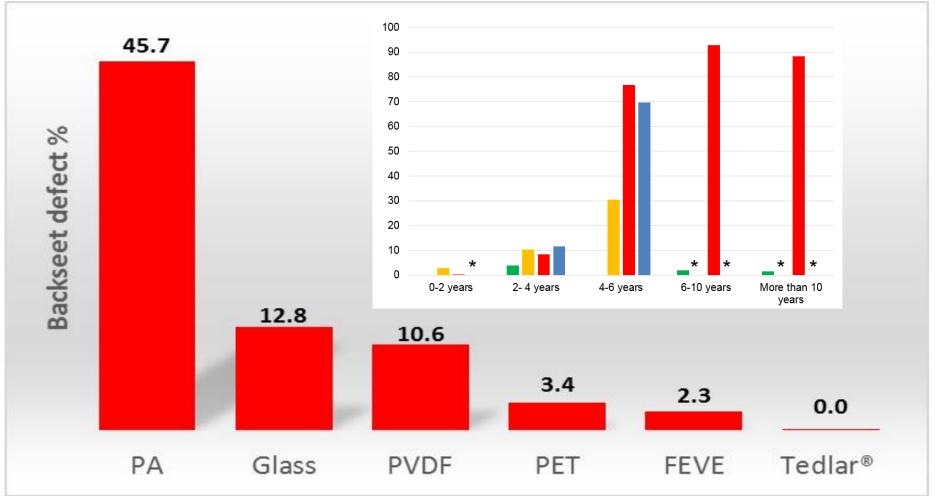


### **Climatic Sensitivity vs. Polymer Degradation**



 $k = A e^{-rac{E_{\mathrm{a}}}{RT}}$ 

### **Temperature**


Higher temperature seems to accelerate degradation rates of the encapsulant and backsheet

<u>Source</u>: DuPont Field Module Program 2017 <u>Note</u>: All percentage numbers are based on MW



### Material Sensitivity vs. Backsheet Defect Rates

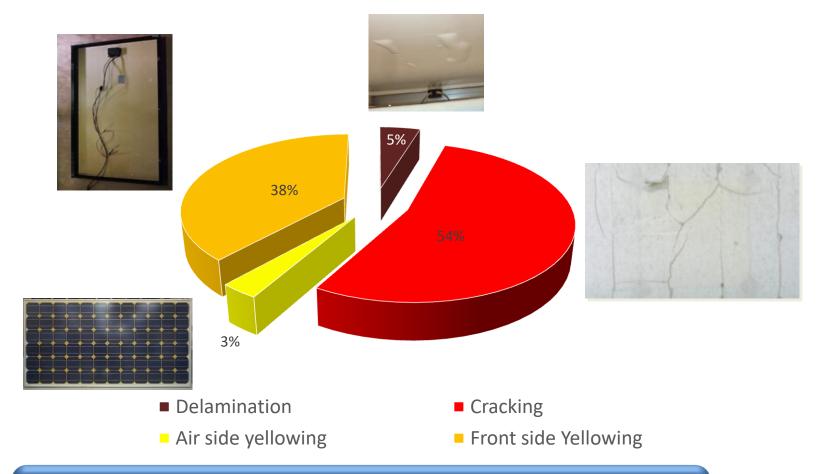
### Defect rate as a function of backsheet used



PA = Polyamide

PVDF = Polyvinylidene Difluoride

PET = Polyethylene Terephthalate

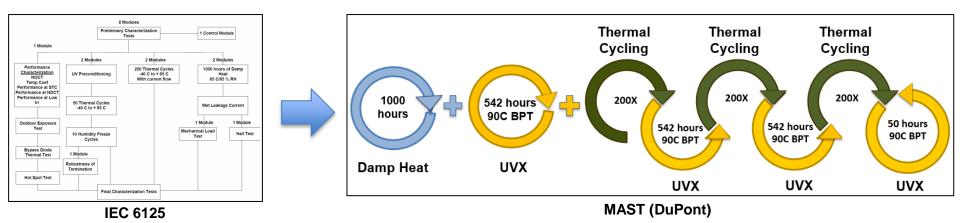

FEVE – Fluoroethylene Vinyl Ether

\* No field data available

© DuPont 2018



### **Types of Degradation Affecting the Backsheet**



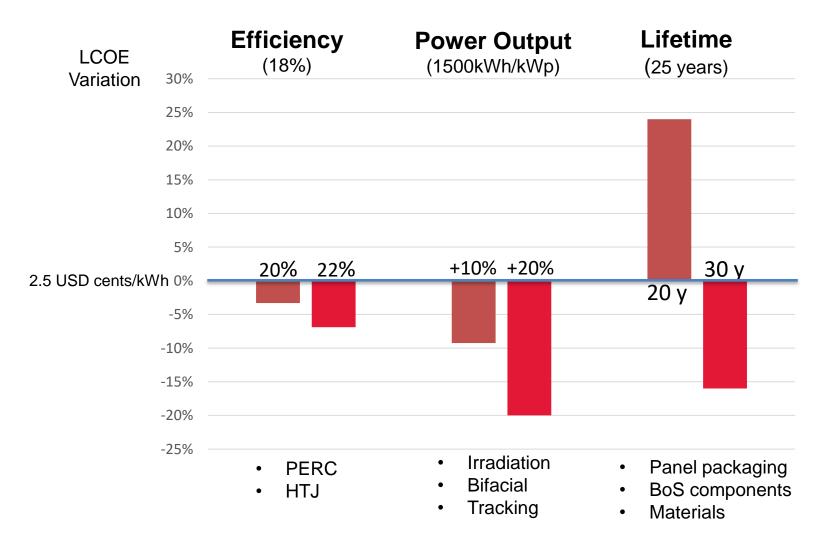

Cracking and delamination represent serious threats to the electrical protection of the panel (59% of defects). Yellowing is an indicator that the polymer has started to degrade

Source: DuPont Field Survey 2016



### **DuPont Sequential Stress Test (MAST) vs. Field**




| Stress                             | PET                                     | PVDF                                | PA                                      | Tedlar®        | Comment                                         |
|------------------------------------|-----------------------------------------|-------------------------------------|-----------------------------------------|----------------|-------------------------------------------------|
| Field                              | Yellowing<br>Mech Prop Loss<br>Cracking | Cracking<br>Front Side<br>Yellowing | Yellowing<br>Mech Prop Loss<br>Cracking | Low<br>defects | Effects of simultaneous and sequential stresses |
| Damp Heat (1000 hrs)               | Slight Yellowing                        | No Change                           | Mech Prop Loss                          | No Change      | Misses UV degradation                           |
| UV (4000 hrs)                      | Yellowing<br>Mech Prop Loss             | No Change                           | Mech Prop Loss                          | No Change      | Misses hydrolysis and<br>moisture               |
| DH/UV/TC (MAST<br>Sequential Test) | Yellowing<br>Mech Prop Loss<br>Cracking | Cracking<br>Front Side<br>Yellowing | Yellowing<br>Mech Prop Loss<br>Cracking | No Change      | Combines key stresses<br>Gives best correlation |

#### Sequential tests correlate better with degradation seen in the field

- Combine most important stress factors
- Use stress levels / dosages that match field exposures
- Accelerate with highest temperature but
- Do NOT produce degradation not found in the field



### **LCOE Sensitivity**





### Summary

- Think in terms of EUR/kWh rather than EUR/Wp reliability & durability are key
- IEC certification is not designed to predict the long-term performance of the panels
- Consider alternative sequential testing approach (MAST) to better simulate the field stress conditions and mimic actual defects observed
- Consider field-proven materials and panel construction, UV and thermal resistant especially in harsh climatic and temperature-sensitive environments
- Work with trusted partners up and down the value chain who have a proven field track record.





# photovoltaics.dupont.com

Copyright © 2018 DuPont. All rights reserved. The DuPont Oval Logo, DuPont<sup>™</sup>, The miracles of science<sup>™</sup>, Materials Matter<sup>™</sup>, and all products denoted with <sup>®</sup> or <sup>™</sup> are registered trademarks or trademarks of E.I. du Pont de Nemours and Company or its affiliates.



The miracles of science™