

Global PV LCOE Sliding Down

Bifacial Modules Market Share Forecast

- √ 3% Bifacial PV module deployment by 2018
- ✓ China pioneering thanks to its Top Runner program
- ✓ Market share aimed to rise sharply, reaching 40% by 2025

Top Runner Programme

Quota allocation for the 3rd
Batch of Top Runner in 2017

GCN's module choices in Top Runner Project

- CGN is Jinko's key account in the Top Runner Scheme
- CGN bids for 700MW in total
- 65% with bifacial technology
- 390MW supplied by Jinko of which 200MW Bifacial

✓ Monocrystalline modules, P/N-type, account for 86% (4.3GW)
 ✓ 53% Bifacial share (2.65GW)

Various Application Possibility

Railing

More generation than conventional monofacial module, although it is installed vertically from the sunsun

Soundproof

Various applications utilizing vertical installation advantage

Snow-covered Circumstance

Rear-sided generation in the situation front side is blocked by snow

Carport

Fit for installation situation such as carport that is suitable for take reflection light

Sun-Tracking Mount

Tracker mount allows for higher output of Bifacial modules

Source: JinkoSolar 5

Bifacial Modules

When optimized, Bifacial module generates up to 20~30% more energy Compared to conventional monofacial module.

Bifacial module: double-sided generation

Standard module: front-sided generation only

Source: JinkoSolar

Bifacial: Technical Concept

Bifacial Cell & Module Structure Sun → Front metal finger light Front side ARC -Grid ARC → light doped emitter(n+) **GLASS** P-type substrate CELL CELL P-type mono wafer → Heavily doped **GLASS** emitter(n++) ARC Rear passivation -Grid film Sun light Rear local contact Al layer (Al doped p+) Normal PERC Front metal fingers Front side ARC ◀ ▶ light doped emitter(n+) P-type substrate Heavily doped emitter(n++) Rear passivation • film Rear local contact Al finger (Al doped p+) Bifacial PERC **Back Side** Front Side

Bifacial Design: Ceramic Glass

Fully transparent rear glass

+5Wp

Ceramic glass

Low-Irradiance Response

Inverter ON/OFF	Different MPPT			
	start time	end time		
Bifacial Module	05:09:48	18:48:48		
Normal Module	05:41:38	18:18:08		

*Note:

- √ Gain compared to monofacial poly
- ✓ The time of Im numerical acquisition is the time when the system starts to generate electricity
- ✓ The steps in the chart represents the time when the module starts/ends generating electricity

Bifacial Module Gain: Albedo

Albedo

Bifacial module

Direct sunlight

Direct sunlight + Reflection + Scattered light

Albedo

Fraction of the solar energy reflected from the Earth back into space

$$GCR = \frac{Module \ area}{Ground \ area}$$
 Vs Pitch

Higher GCR implies closer rows

$$albedo = \frac{reflected\ light}{incident\ light} = \frac{Isc\ ground}{Isc\ sky}$$

Albedo variations – ground type and season

Soil surface: color and texture

↑ white and smooth → ↑ bifacial gain

It can vary with seasons:

Best Case Snow
Good Case White sand
Medium Case Ground-grass varieties
Worst Case Volcanic Rock

Source: Soltec

Bifacial Installation Design Parameters

Source: NREL

Bifacial Power Gain- Actual Data

Real Power Generation Gain

Power generation gain of bifacial modules depends on the different ground conditions

P-Type Bifacial 60 cell 310W

22piece*147string=3234piece (1 MW)

Project in Baicheng, China

CAS Test Center confirmed that bifacial Module gained 18% in white-painted ground.

G	Ground	Water	Grass	Cement	Sand	White- paint
Albedo		~3%	~15%	~32%	~24%	~80%
Actual Data	JINKO	4-5%	6-7%	6-7%	7-9%	17-19%
	Third- Party(CAS)					18%
System PR	Baseline=80%	83-84%	84-86%	84-86%	85-90%	93%-96%

Save Module and BOS Cost

Assuming that two solar farms generate same amount of energy (1,414 MWh per year),

Jinko solar Bifacial farm can save BOS costs including land area, compared to single-face

P-type

260W P type single-face module 2,743ha

Jinko Bifacial 2,407ha (Assuming max rear-sided generation 27.3%)

PROJECT	Basic	Pro.1	Pro.2	Pro.3
Project capacity (MWp)	100	Mono Perc	Bifacial	Bifacial
Module Power(W)		380	380	380
Power Warranty(year)		25	30	30
Temperature Coefficiency of Power(%)		0.39	0.37	0.37
Annual degradation (%)		0.7	0.5	0.5
Bifacial Factor(%)			0.7	0.7
Back Energy Gain			6%	18%
ANALYSIS RESULTS				
LCOE(UScent/kWh)		9.61	8.57	7.70
IRR		13.12%	15.85%	20.97%
PPA price (/KWh)	\$0.11			
ENGINEER				
First year front side yield (MWh)		105,315	111,634	124,272
System Voltage(V)		1500	1500	1500
System nominal output at STC(Wdc)		100,005,360	100,005,360	100,005,360
Global inverter power(Wac)		82,500,000	82,500,000	82,500,000

*Notes:

- Frameless module
- Same Capacity: 100MW

*Notes:

- 6% is sand or cement ground
- 18% is white-painted or snow ground

BOS costs savings on:

- Land
- Structures
- Labor
- wiring and cable layout
- O&M activities
- ✓ Address : Jinko factory, Haining , 30.32° north latitude, 120.42° east longitude
- ✓ **Tilt angle**: 30 °, close to the latitude:
- ✓ Mounting height: the distance from the lower edge to the ground is 1.0m;