

Wind

Solar

Hydro

Marine

Geothermal

Biomass & Waste

Nuclear Power

Coal

Gas

Oil

Peat

Source: BNEF, 2017

Total Installed Power Globally ~ 5700 GW Installed Solar Capacity < 500 GW

SWOT ANALYSIS

STRENGTHS

 Huge Development and Financing Experience on Solar PV, which can be extended to Solar PV + ESS

WEAKNESS

- Limited Technical Expertise on ESS
- Limited Track Record of Project Financing for Solar + ESS

OPPORTUNITIES

- Capability to replacing coal/oil based power plant to serve base load
- Reduction in Cost on Solar PV + ESS, lowering LCOE every Year
- Favorable Government policy & incentives promoting clean energy
- Awareness to Decarbonizing the world & embrace clean energy

THREATS

- Unclear USE cases for ESS, together with finite life cycles of battery
- Relatively uncertain revenue stream makes project financing difficult
- Li-Ion ESS comes with poor OEM warranties with too many caveats
- Combined Cycle Gas plant, Bloom Cell & Hydrogen Cell technology

TECHNOLOGY RISK

Pass On the Risk

Full wrapped EPC Agreement deliver single point of responsibility, thus make the project bankable.

Avoid the Risk

EPCs Engineer the plant & ensure performance as envisaged in the business model for financing

Hedge the Risk

Insurance company underwrite
Technology Risk, thus protect
both the developer as well as
the lender

REVENUE STREAM UNCERTAINTY

Realize through Energy Payment

Fuel cost + O&M costs + Variable Operational Payment Measured through quantum of electricity delivered.

Realize through Capacity Payment

Compensation for fixed costs of Plant installation + ROI.

Predetermined amount, adjusted for plant availability.

Realize through Renewable Credits

Incentives to produce renewable energy.

To increase production of renewable energy.

REVENUE STREAMS

Energy PPA Model

Time-of-Day (TOD) PPA

TOD factor in PPA, means electricity produced during peak times is more valuable than electricity produced during off-peak time

Energy Arbitrage

Real Time & Day Ahead market options. And even leftover is sufficient for making business model viable with Real Time market

Market Participation Model

Capacity PPA

Entire capacity sold in exchange for fixed monthly capacity fee + reimbursement of other recurring expenses.

Ancillary Services

Reserve & Regulation market, with frequency/voltage Regulation, , Reactive Power Control, Transient Smoothing service

Policy Incentives

30% ITC in USA RECs in S. Korea

LCOE: PV + ESS PROJECT

Cost of interest @ 6% PA, Loan term = 12 Yr, Project Life = 25 Yr

Cost of BESS (USD per kWh) is as below

1 Hr back-up 2 Hr back-up 3 Hr back-up 4 Hr back-up USD 345 USD 305 USD 270 USD 235

Cost of PV @ 60 USD cents per Wp

Cost of interest @ 6% PA, Loan term = 12 Yr, Project Life = 25 Yr

Cost of BESS (USD per kWh) is as below

1 Hr back-up	2 Hr back-up	3 Hr back-up	4 Hr back-up
USD 298	USD 263	USD 233	USD 203

Thank You

You can reach us at

www.sterlingandwilson.com solarinternational@sterlingwilson.com