

Taking action on substandard solar, including product testing, fault detection, warranty claims and glass-glass modules

Quality Roundtable – All-Energy Australia 2019

NEXTracker

A Flex Compar

LONG

solaredge

Agenda

Part I

10:00

10:35

11:15

pv magazine group

Welcome and introductions

ROOFTOP PANEL DISCUSSION Identifying, diagnosing, and testing for failures – then what to do when things go wrong QUALITY CASE 1 Module level monitoring for fault detection and proactive O&M implementation QUALITY CASE 2 PID, hotspots, backsheet failures, and warranty claims, in tropic climate

SOLAR LEADER DIALOGUE LeTID in high efficiency PV cells, opportunities for 'next generation' PV products

Agenda

Part II

11:35

11:45

12:20

pv magazine group

PRESENTATION Latest findings from DuPont's global quality field survey - over 2 GW of modules inspected

UTILITY PANEL DISCUSSION From design to commissioning, best practices across the supply chain for fault prevention and underperformance PRESENTATION Australian utility scale PV market major players and progress QUALITY CASE 3 Microcrack inspections, and the role of in-factory quality assurance

Closing remarks and invitation to the Networking Session

Future PV Roundtable India

Quality Roundtable Europe

Quality Roundtable India

Quality Roundtable USA

Rooftop panel discussion

Identifying, diagnosing, and testing for failures – then what to do when things go wrong

Sandy Pulsford

Product testing and compliance specialist, Clean Energy Council

Durmus Yildiz

Managing Director BayWa r.e. Solar Systems

Jack Long

Director, Solar Cutters

Richard Qian

Product Engineer

LONG

Quality case 1

Module level monitoring for fault detection and proactive O&M implementation

Quality Roundtable – Taking action

pv magazine group

Lior Handelsman

VP of Marketing and Product Strategy

Tools for Optimizing O&M on the Roof

Lior Handelsman

October 23rd, 2019

O&M Tools

O&M Cost Saving

- Preventive maintenance
 - High resolution, module-level monitoring
 - Remote inspections
 - Fewer strings less inspection time
- Corrective maintenance
 - Pinpointed alerts
 - Advanced troubleshooting
 - Safer maintenance

O&M Cost Breakdown**

Preventive Maintenance

Note: Exclusive of Module cleaning

PV Asset Management

- Comprehensive analytics tracking and reports of energy yield, system uptime, performance ratio, and financial performance
 - Dashboard Energy production is displayed with weekly, monthly and yearly resolution
 - Production and consumption metering
 - Performance Ratio Analyze and track the system's performance ratio using satellite data or onsite

PV Asset Management

- Real-time remote monitoring at the module, string, and system levels
 - **Fault detection pinpointed on a virtual site map**
 - Alerts on components issues
 - Know before you go

Detecting Bypass Diode Failure

- Issue pinpointed to module level
- Resolution will generate more energy for the owner for system lifetime
- 0.3% to 1.5% of modules

Next Step: Automatic Diode Failure Detection

- Development of algorithm to automatically detect bypass diode failure
 - Eliminate false positives (cloudy, soiling shading)

PID Detection

- Potential induced degradation is a physical phenomena in high voltage PV systems, that significantly reduces module power and system production
- Occurs if modules have a negative potential to earth while in operation, and is strongest on modules closest to the inverter's negative pole

Electroluminescence images of a module before (left) and after (right) PID testing. Source: PVTech Photo: Fraunhofer CSE

Remote PID Detection

- With module-level monitoring, PID problems can be detected in "two clicks"
- Looking at the string modules power, degradation of power in the last modules is shown (closest to the negative pole)
- No need to send technicians to the roof modules voltage is measured remotely

Next Step: Automatic PID Detection

- Development of algorithms to automatically detect PID
 - Identifying a high relative spread in voltage after filtering strings with same orientation and tilt
 - Rule out other phenomena that can cause a large voltage spread

Not PID

PID

PID

Extending Safety to Connector Level

- Detect and react to heat before connectors become flammable
 - Thermal detection at the connector level

Hot connector

- Thermal inconsistency identification
- System goes into safety mode
- Alert appears in the monitoring platform

Case Study

Case Study: Power Optimizers vs IR Imaging

- Analysis performed by ZAE Bayern & i-MEET (presented at 33rd EUPVSEC)
- Research Methodology
 - Tested 10 PV systems, 1-6 years old
 - Installations consisted of roofs of differing angles and inclinations
 - Drone-mounted IR-imaging systems measured and recorded environmental data
 - Data evaluation combined IR readings with the cumulative production data from SolarEdge monitoring platform, and ambient temperature, wind speed and relative humidity from a weather data service.

Source: "Verifying defective PV-modules by IR-imaging and controlling with module optimizers," Bavarian Center for Applied Energy Research (ZAE Bayern) together and the Materials for Electronics and Energy Technology Institute (i-MEET). Presented to the 33rd European Photovoltaic Solar Energy Conference and Exhibition and was selected by the Executive Committee of the EU PVSEC 2017 for submission to "Progress in Photovoltaics".

Case Study: Power Optimizers vs IR Imaging

Findings

- Out of 10 PV sites investigated, failures were detected in 6
- Significant similarities between IR imaging and power optimizers

Conclusion

- Module-level monitoring has the advantage of finding and quantifying failures <u>continuously</u> during operation
- IR-imaging does not account for variable effects, and temporal changes
- Power optimizers provide added benefits of eliminating mismatch losses

Source: "Verifying defective PV-modules by IR-imaging and controlling with module optimizers," Bavarian Center for Applied Energy Research (ZAE Bayern) together and the Materials for Electronics and Energy Technology Institute (i-MEET). Presented to the 33rd European Photovoltaic Solar Energy Conference and Exhibition and was selected by the Executive Committee of the EU PVSEC 2017 for submission to "Progress in Photovoltaics".

Cautionary Note Regarding Market Data & Industry Forecasts

This power point presentation contains market data and industry forecasts from certain thirdparty sources. This information is based on industry surveys and the preparer's expertise in the industry and there can be no assurance that any such market data is accurate or that any such industry forecasts will be achieved. Although we have not independently verified the accuracy of such market data and industry forecasts, we believe that the market data is reliable and that the industry forecasts are reasonable.

Thank You! Booth #N131

Sandy Pulsford

Product testing and compliance specialist, Clean Energy Council

Durmus Yildiz

Managing Director BayWa r.e. Solar Systems

Jack Long

Director, Solar Cutters

Richard Qian

Product Engineer

LONGİ

Quality case 2

PID, hotspots, backsheet failures, and warranty claims, in tropic climates

Quality Roundtable – Taking action

RECORD OF ELECTRICITY USAGE & SOLAR EXPORT								
Solar Installation July	2014							
TIME PERIOD	No. of DAYS	PEAK USAGE kWh	SOLAR EXPORT kWh					
2015								
23 May - 19 Aug	89	1762	859					
2016								
25 May - 24 Aug	92	1668	655					
2017								
25 May - 21 Aug	89	1049	1097					
2018								
24 May - 21 Aug	89	1100	740					
2019								
23 Feb - 23 May	90	669	707					

Quality Roundtable – Taking action

pv magazine group

Test equipment: HT Instrument IV 400, using a HT304N irradiance meter and PT300N thermocouple connected via Solar-02 wifi sender.

Quality Roundtable – Taking action

pv magazine group

32

Sandy Pulsford

Product testing and compliance specialist, Clean Energy Council

Durmus Yildiz

Managing Director BayWa r.e. Solar Systems

Jack Long

Director, Solar Cutters

Richard Qian

Product Engineer

LONG

LONGi cordially invites you to: All Energy Australia 2019

Melbourne Convention and Exhibition Centre 23-24 October, 2019 Booth No. i123

Third-Party LeTID Test Result – TÜV Rheinland

> For LR6-72PH, the LeTID degradation is less than 0.83%.

\triangleright	For LR6-72BP,	the LeTID	degradation	is	less than	1.41%.
	,					

Sample no.	P _{max} [W]	V _{mpp} [V]	I _{mpp} [A]	V _{oc} [V]	I₅c [A]	FF [%]	Total change for P _{max} [%]	Verdict
1	368.9	39.89	9.248	48.92	9.743	77.4	-0.65	N/A
2	368.5	39.88	9.239	48.92	9.687	77.8	-0.41	N/A
3	368.5	39.82	9.254	48.94	9.724	77.6	-0.83	N/A
4	367.6	39.73	9.253	48.89	9.725	77.3	-0.57	N/A
5	368.2	39.67	9.281	48.93	9.729	77.3	-0.30	N/A
6	369.7	39.87	9.271	48.94	9.758	77.2	0.00	N/A
7	368.4	39.84	9.248	48.93	9.710	77.5	-0.75	N/A
8	369.2	39.80	9.276	48.96	9.775	77.2	-0.59	N/A
9	369.7	39.92	9.261	48.94	9.742	77.1	-0.27	N/A
10	368.4	39.84	9.247	49.01	9.724	77.5	-0.49	N/A

Sample no.	P _{max} [W]	V _{mpp} [V]	I _{mpp} [A]	V _{oc} [V]	I _{sc} [A]	FF [%]	Total change for P _{max} [%]	Verdict
1	363.1	39.54	9.183	48.47	9.642	77.7	-0.93	N/A
2	362.6	39.56	9.167	48.49	9.574	78.1	-0.63	N/A
3	363.0	39.60	9.167	48.53	9.606	77.9	-0.74	N/A
4	364.5	39.44	9.243	48.61	9.627	77.9	-0.30	N/A
5	363.0	39.50	9.191	48.66	9.546	78.2	-1.41	N/A
6	363.9	39.39	9.238	48.62	9.649	77.5	-0.52	N/A
7	362.4	39.33	9.214	48.50	9.597	77.9	-1.31	N/A
8	364.5	39.44	9.243	48.61	9.627	77.9	-1.14	N/A
9	364.0	39.51	9.214	48.69	9.661	77.4	-0.33	N/A
10	363.3	39.45	9.209	48.57	9.664	77.4	0.22	N/A

Third-Party LeTID Test Result – TÜV SÜD

LONGi R&D team proposed the following test method and entrusted TÜV SÜD to test LONGi

mainstream product LR6-72PE.

•Pre-conditioning Procedure: Ambient temperature 25°C, the tested module is applied with 10A current for 10 hours.

•Ambient temperature 75°C, the tested module is applied with 10A current for 300 hours.

The data are shown as below, LeTID degradation rates are less than 0.34%.

Test Method	Test sample	Initial Peak Power	CID (25℃, 10A, 10h)		CID (75℃, 10A, 300h)	
CID (25℃, 10A, 10h)	72PE-1	367.021	369.122	0.57%	369.399	0.65%
CID (75℃, 10A, 300h)	72PE-2	368.940	368.547	-0.11%	367.683	-0.34%

Third-Party LeTID Test Result – PVEL

- > Test method: CID (75°C, Isc-Impp, 162h) *3 for Modules (72HPH)
- > The data are shown as below, LeTID degradation is 1.13%.

1.2. Test data summary

Average Post-stress Change in PMAX Relative to Initial Measurement [%]				
Model	Average Percent difference of Average Percent difference of Post-486 h Pmax from Pre-stress Post-486 h Pmax from Nameplat Pmax [%] Pmax [%]			
LR6-72HPH-375M	-1.13	-0.95		

Summary

TÜV SÜD	72PE	Pre-conditioning: CID (25°C, 10A, 10h), CID (75°C, 10A, 100h)	done	Degradation < 0.34%
TÜV Rheinland	72PE,72BP	CID (75°C,2*(lsc-Impp),300h)	done	Degradation around 1%
PVEL 72HPH CI		CID (75°C,lsc-Impp,162h) *3	done	Degradation 1.13%

Sandy Pulsford

Product testing and compliance specialist, Clean Energy Council

Durmus Yildiz

Managing Director BayWa r.e. Solar Systems

Jack Long

Director, Solar Cutters

Richard Qian

Product Engineer

LONG

Solar leader dialogue

LeTID in high efficiency PV cells, opportunities for 'next generation' PV products

Quality Roundtable – Taking action

pv magazine group

Shi Zhengrong

Founder, SunMan

бал гетиче

Martin Green

Scienta Professor, UNSW

Source: PVInfoLink

Multi vs. mono market share

Quality Roundtable – Taking action

pv magazine group

Conventional 📕 Half cut 🖉 Half cut + MBB 📕 MBB 📕 Gapless 📕 Shingled 📕 Thin film 🔳 Others 250 GW _ 250 GW 200 GW _ 200 GW 11111 150 GW ____ 150 GW 100 GW 100 GW ____ 50 GW 50 GW ____ 0 GW 0 GW 2018 2019 2020 2021 2022 2023

Module capacity forecast

Source: PV InfoLink

Global PERC cell expansion forecast

Source: PV InfoLink

Quality Roundtable – Taking action

pv magazine group

Shi Zhengrong

Founder, SunMan

бал гетиче

Martin Green

Scienta Professor, UNSW

Presentation

Latest findings from DuPont's global quality field survey – over 2 GW of modules inspected

Quality Roundtable – Taking action

pv magazine group

Hongjie Hu

Greater China Technical Service & Development Leader, Tedlar & Fortasun

DuPont Photovoltaic and Advanced Materials

Latest Findings From DuPont's Global Quality Field Survey

Dr. Hong-Jie Hu

Greater China Technical Service & Development Leader, Tedlar® & Fortasun™

OUPONT

Quality Roundtable Australia 2019. Oct 23rd, Melbourne.

Stronger and Broader Product Portfolios

30+ Years Proven Performance Drive Lower LCOE for Higher Return

DuPont Reliability Program

Quality Awareness

Field Module Inspection | Accelerated Testing

DuPont's Approach to Understanding PV Module Reliability

Begins in the Field

- · Understand both degradation of modules and materials
- Global Field Program to assess degradation and aging
- Analysis by Climate, Component, Material, Age

Continues in the Lab

- Analysis of the materials under actual outdoor and accelerated aging conditions and identification of failure modes (fundamental reasons) to analyze the failure
- Understand the mechanism of outdoor aging and identify correlation between outdoor aging and accelerated aging tests
- Identify tests methods for each component to better simulate failures
 occurring in actual outdoor conditions

Accelerated Tests must Match the Field

- What are we trying to predict?
- Formalism: Sample / Stress / Measurement
- Accelerated and analytical Capabilities
- Sequential Tests Development
- Share Approach, Methodology, and Key Learnings
- Illustrate with examples

< DUPONT >

2019 Global field data analysis summary

Nearly 2 GW of fields and 355 installations inspected				
 Total module defects observed: 34% 	•	Backsheet defects increased by 47% from 2018		
 Total backsheet defects observed: 14% 		analysis		

Module Defect Trends*

Cell / Interconnect: corrosion, hot spot, snail trails, broken interconnect, cracks, burn marks

Cracking constitutes 66% of all backsheet defects

Backsheet: outer layer (air side) and inner layer (cell side) cracking, delamination, yellowing

Encapsulant: discoloration, browning, delamination

Other: glass defects, loss of AR coating, junction box

* Actual module defects can be higher due to defects not picked up by initial inspection protocol (eg. cell cracking evidenced by subsequent EL or PID test)

Sharp increase in backsheet defects after 4 years

PA = Polyamide PVDF = Polyvinylidene Difluoride PET = Polyethylene Terephthalate FEVE – Fluoroethylene Vinylether

Backsheet Defect Analysis by Material and Age

< OUPONT >

Backsheet Defects by Degradation Mode

Cracking and delamination can compromise electrical insulation of the module

Yellowing can be a precursor to mechanical degradation and embrittlement of many backsheet polymers

< OUPONT >

Polyamide (PA) Based Backsheets: Failed (cracked) in Several GW Module Across Globe

History

- Launched in 2011 as low cost alternative
- Passed IEC (2x, 3x) tests

Current Scenario

- Failed (Cracking) globally after 3-6 years in the field
- Cases of generation loses due to inverter tripping
- Estimates of 11+ GW installations with Polyamide backsheets at significant risk

Tier 1 and IEC certified modules failed in less than 5 years

4 years, Xinjiang, China Outer layer cracks 6 years, Sonoran Desert, USA Inner layer cracks

PVDF Based Backsheets: Widespread Cracking

History

- Launched ~10 years ago as a flouro-polymer based backsheet (alternate to Tedlar® PVF)
- Extensively used in past 3-4 years owing to widespread failures in Polyamide and PET based back-sheets

Current Scenario

- <u>Started to show outer layer</u> cracking in 6+ years old plants
- Highly likely to eventually crack in all plants

China, 6 years, PVDF India, 7.5yrs, PVDF

India, 7.5yrs, Tedlar® PVF, No defect.

OUPONT

Why Backsheet Defects are Increasing?

PV Module Bankability 2018: Backsheet Under the Spotlight

- Each year, Bloomberg NEF assesses the bankability of PV module manufacturers, based on our internal asset financing database, interviews with technical advisers and a survey sent out to relevant industry participants. We also assess recent updates on PV module quality and changes in technology.
- Jinko Solar, First Solar and Longi are the leading suppliers to term-loan financed projects since July 2016, according to our internal asset financing database.
- BNEF asked respondents which manufacturers out of a list of 57 they considered 'bankable'. All 23 survey respondents considered four brands fully bankable: Trina Solar, Jinko Solar, JA Solar and Canadian Solar. GCL System improved its reputation the most compared to last year's survey. Our survey revealed that bankability perception differs in China, due to the large domestic supply of modules and because recourse financing is uncommon.
- Interviews revealed that the main concern for debt lenders is the financial health of the module suppliers. Banks also highly value manufacturers' guarantees and warranties.
- While existing quality issues such as light-induced degradation and potential-induced degradation are being solved, new problems arise. Backsheet is the latest worry of investors and developers. Changes in the product recipe due to cost-saving strategies, implemented in earlier years, are now leading to the degradation of backsheet in the field.
- Bifacial modules, most of which have a double-glass structure instead of backsheet, are
 rapidly gaining market share. Nine of the ten largest module manufacturers are producing
 them or have a pipeline. The main concern for manufacturers is higher glass breakage rates
 and bubbles during assembly, though these issues will not be challenging to overcome.

Source: PV Module Bankability 2018 Report, Bloomberg NEF

Frequent changes in backsheets structures and use of unproven materials in past 10 years is resulting in GW scale backsheet failures

Backsheet structure	structure Backsheet Materials	
Inner Layer	PVF / Polyethylene (PE) / Polyolefin (PO) / FEVE Coating	
Middle Layer	PET Polyester/ Polyolefin (PO)	
Outer Layer	PVF / PVDF / PET / Polyamide (PA) / FEVE Coating	

Bloomberg NEF Highlights Backsheet Issues

While existing quality issues such as light-induced degradation and potential-induced degradation are being solved, new problems arise. Backsheet is the latest worry of investors and developers. Changes in the product recipe due to cost-saving strategies, implemented in earlier years, are now leading to the degradation of backsheet in the field.

Accelerated test data under different stresses: PVDF film show brittleness and loses TD % elongation

PVDF TD elongation drops to 0% after either low dosage of DH, PCT, UVA, high temperature or low temperature test, which creates high cracking risks in field.

< DUPONT >

Sequential Test at PVEL and NREL Simulates Field Cracking in PVDF Backsheets

Visible cracks on PVDF backsheets observed in full-size commercial modules from tier 1 module maker.

Peter Hacke, et. al., "Combined and sequential accelerated stress testing for derisking photovoltaic modules", NREL Reliability Workshop,, Golden, CO, (2019)

OUPONT

Independent researches from PVEL and NREL both revealed visible cracks on PVDF backsheets observed in full-size commercial modules, respectively. No defect in PVF backsheet was observed

Conclusions

- Increase in occurrence of module component defects especially backsheets observed in 2019 field studies. Most backsheets (based on outer layer material), except PVF, are showing increase in defect rate with age. Some backsheets have already failed in multi-GW installations.
- Backsheet failure typically requires replacement of module that leads to huge financial losses.
- Accelerated testing, as shown by PVEL and NREL, replicates backsheet failures as seen in the field.

Risk Mitigation: Know and Specify Right BoM with proven materials

- Modules with same model number but with two different BoMs supplied by Top Tier manufacturer performed significantly different.
- Module buyers and asset owners may experience differing levels of reliability and performance in the field when multiple BOMs are deployed
- Choose materials with proven field exposure and thorough testing to avoid expensive unforeseen PV field costs

OUPONT

High Efficiency and High Reliable Materials are Essential of PV Grid Parity

Because the World Can't Wait

For nearly five decades, we've been the leading PV materials expert. Today, our capabilities extend from materials to modules, including PV materials science as well as cell and module processing, architecture, and testing.

OUPONT

Solamet ®

Fortasun[™]

Tedlar[®]

- ETENA TIT

Utility panel discussion

From design to commissioning, best practices across the supply chain for fault prevention and underperformance

Marty Rogers

VP Global Asset Management and Support

Michelle McCann

Partner PV Lab Australia Jan Mastny

Head of Global Sales, Solar & Wind

LEONI

Hongjie Hu

China Technical Service and Development Leader

OUPONT

Jin Hao VP of Research & Development Solar

JinKO Building Your Trust in Solar

Presentation

Australian utility scale PV market major players and progress

Quality Roundtable – Taking action

pv magazine group

Dave Dixon

Dave Dixon, Senior Analyst, Renewables Rystad Energy

Top 10 module suppliers to Australia

Top four inverter suppliers to Australia

Top eight tracker suppliers to Australia

Top 10 PV developers in Australia

Top 10 utility-scale EPCs in Australia

Marty Rogers

VP Global Asset Management and Support

Michelle McCann

Partner PV Lab Australia Jan Mastny

Head of Global Sales, Solar & Wind

LEONI

Hongjie Hu

China Technical Service and Development Leader

OUPONT

Jin Hao VP of Research & Development

Low quality in the PV industry - examples

Wrong installations – high filling in the tubes

Example: 16 A and 4 mm2 (100m = 0.5 Ohm) => $16^2 * 0.5 = 128 \text{ W}$

20 cables in this duct are loosing 2560 W (!)

2000 W is enough to heat up a 30m² room

Low quality in the PV industry - examples

UV Resistance of color cables

UV is a killer of plastics

- The UV radiation that is absorbed by a polymer material will result in it's degradation.
- Incorporating carbon additives greatly increases weather resistance. Carbon black acts as a UV absorbent.
- It is possible to pass the weathering tests with red or blue cables but it is also a fact that this results cannot tell us the lifetime!

pv magazine group

Marty Rogers

VP Global Asset Management and Support

Michelle McCann

Partner PV Lab Australia Jan Mastny

Head of Global Sales, Solar & Wind

LEONI

Hongjie Hu

China Technical Service and Development Leader

OUPONT

Jin Hao VP of Research & Development

JinKO Building Your Trust in Solar

pv magazine Quality Roundtable – All Energy Australia Marty Rogers, VP Asset Management & Services 23 October 2019

HYDROLOGY AND FLOOD ANALYSIS

- Submerged Equipment can lead to future failures, all Nextracker equipment located on the Torque Rube
- Utilizing smart flood sensors can rotate the trackers outside of water depths

Root Causes of PV Failure

Weather is the #1 source of PV insurance claims

Climate change leading to a rise in extreme weather

ROOT CAUSES OF SOLAR PV CLAIMS

Source: GCube

Site Specific Wind Analysis

ビ☆

rived 6

Thur

- ASCE code covers large areas and site specific analysis is necessary to determine speed, frequency, and direction
- **NEXTracker works with CPP** to conduct site specific studies to prevent future risks

Fall

See 9

waa.

Sec. 22 - 12-00

Ten 12

Wed 13

Thu 54

Windy

Peer Pressure

- Dynamic loads can be 3x of static loads
- Stowing at 0 degrees or low tilts in most vulnerable position for dynamic loading
- Dynamic effects can lead to catastrophic failures
- Only peer reviewed wind tunnel tests should be taken
- Failures often occur between 40-80 kilometers per hour

The Cost of Downtime

- Owners need to pay more attention to LCOE at end of life, rather than simply upfront install costs.
 Maximum uptime results in maximum revenue.
- Wind Failures cause major issues in downtime when sites or portions of sites become nonoperational.
- Loss of uptime will outweigh O&M costs

Thank you

Marty Rogers VP Asset Management <u>Mrogers@nextracker.com</u>

Proprietary and Confidential ©2019

pv magazine group

Marty Rogers

VP Global Asset Management and Support

Michelle McCann

Partner PV Lab Australia Jan Mastny

Head of Global Sales, Solar & Wind

LEONI

Hongjie Hu

China Technical Service and Development Leader

OUPONT

Jin Hao VP of Research & Development

Australia Case Study

In the second se

Wind speed causing event: 46mph

Tracker 2

Tracker 1

A Tale of Two Systems: Wind Event Comparison

CASE STUDY

Adjacent sites in Australia were hit by winds from a thunderstorm

One system received catastrophic damage, the other zero damage

Winds recorded at 46mph, (3-sec gust), which will occur 2-3 times per year, every year on site

pv magazine group

Marty Rogers

VP Global Asset Management and Support

Michelle McCann

Partner PV Lab Australia Jan Mastny

Head of Global Sales, Solar & Wind

LEONI

Hongjie Hu

China Technical Service and Development Leader

OUPONT

Jin Hao VP of Research & Development Solar

TIGER . 460W

Tiger Module Launch

JinkoSolar Co., Ltd.

HC technology

9 Bus Bar

Improve shading tolerance because of splitting a fullcell into half

Tiling Ribbon (TR)

Eliminate cell gap to increase module efficiency significantly.

Comparing with 5BB, Tiger series module uses circular ribbon which is developed by Jinko R&D independently to achieve the reutilization of light absorption and increase energy generation.

LCOE Comparison

*Example : Australia - 100MW Project

LCOE Analysis			
Module	Normal Perc Module	Bigger size Perc Module	Tiger
Power	405	430	460
Efficiency	20.13%	19.33%	20.78%
EPC cost	100%	96%	95%
Land	100%	104%	97%
Opex	100%	94%	88%
1 st Year Generation	226040(MWh/year)	228051(MWh/year)	230331(MWh/year)
Result			
LCOE(US cents/kWh)	3.01	2.99	2.93 🖡
IRR	9.34%	9.47%	10.09%

As a next generation product, Tiger series brings not only advanced technology but also lower LCOE and higher IRR.

pv magazine group

Marty Rogers

VP Global Asset Management and Support

Michelle McCann

Partner PV Lab Australia Jan Mastny

Head of Global Sales, Solar & Wind

LEONI

Hongjie Hu

China Technical Service and Development Leader

OUPONT

Jin Hao VP of Research & Development Solar

Jinko Building Your Trust in Solar

Quality case 3

Microcrack inspections, and the role of in-factory quality assurance

Quality Roundtable – Taking action

pv magazine group

Steve McKenery

Vice President, Sales and Marketing,

MICROCRACK INSPECTIONS, AND THE ROLE OF PRE- INSTALLATION QUALITY ASSURANCE

PRESENTED AT THE PV MAGAZINE GROUP QUALITY ROUNDTABLE AUSTRALIA 2019

Steve McKenery Vice President, Sales and Marketing

Date: 10/23/19

Company Snapshot

Clean Energy Associates is a technical advisory company that provides comprehensive engineering solutions for the solar and storage industries.

Service Focus

Service offerings focus on four key areas:

Quality Assurance

- More than 22 GW experience
- Quality Assurance Program and standards implementation
- Bill of Materials analysis and validation
- 24/7 inline production quality control
- Container loading oversight
- Comprehensive factory audit

Supply Chain Management

- More than 13 GW experience
- Manufacturer due diligence
- Global supplier market
 research
- Supply chain sourcing optimization
- Supplier management and benchmarking
- Tactical and operational procurement

Engineering Services

- More than 2.5 GW experience
- Technical due diligence
- Owner's engineering support
- On-site quality control inspections
- Performance analysis and optimization
- Energy yield assessments

Market Intelligence

- More than 35 GW experience
- Supplier benchmarking program
- Supplier market intelligence program
- Forward cost curve
- Customized market research

COULD 20% OF YOUR RECEIVED MODULES BE AFFECTED BY MICROCRACKS?

This module Has 5 Cells with microcracks. Can you find them all?

This module Has 5 Cells with microcracks. Can you find them all?

PRE- INSTALLATION QUALITY ASSURANCE

- The EPC received 17 MW of modules from a manufacturer in Asia for a US project.
- The EPC identified a concerning number of defective modules upon initial examination of a small test batch prompting the project developer to hire CEA as a third-party investigator.

INITIAL TESTING AND RESULTS

- CEA conducted visual and EL testing on a sampling of 500 modules and found that 29% were defective.
- CEA also compared the EL images of the defective modules with the EL images taken at the factory pre-shipment finding 36% of the modules defective.

(10.5% of the total modules inspected)

100% WAREHOUSE INSPECTION of 53,500 PV MODULES in 8 WEEKS

CEA built a temporary inspection line at the warehouse which allowed up to 2,000 modules to be EL tested and visually inspected per day.

- Client only received acceptable modules
- CEA Field Testing Services kept over 10,000 modules with detrimental microcracks from being installed
- Analyzing EL images takes significant experience and training

EXECUTIVE SUMMARY

- The high rate of defective modules present before shipment emphasizes the need for **QA inspections during module manufacturing**, especially for less established manufacturers.
- The majority of the defects observed were after factory EL was taken, emphasizing the value of **pre-shipment inspection**, and proper handling and shipping procedures.

- When modules are installed without post shipment inspection, the EPC and/or Developer is taking a risk on the quality of the modules.
- Inspections performed by CEA found that almost 20% of received modules had detrimental microcracks.
- Had these modules been installed, the results could have been disastrous as the modules would not have performed as expected and could result in a potential safety risk or thermal event.
- If the EPC chose not to inspect the modules, they would have been held responsible for the issues caused by modules that were defective before they arrived onsite.

THANK YOU

Company:Clean Energy AssociatesWebsite:www.cea3.comEmail:SMcKenery@cea3.com

Clean Energy Associates LLC. I Confidential

pv magazine group

Networking session

Taking action on substandard solar, including product testing, fault detection, warranty claims and glass-glass modules

Quality Roundtable – All-Energy Australia 2019

NEXTracker

A Flex Compar

LONG

solaredge

