

Short Introduction of JKS

SWAN

JKS Product Portfolio 2019

Cheetah

Tiger Monofacial Tiger Bifacial TB Cheetah FC Swan Bifacial TB Cheetah HC Swan Bifacial DG 400Wp(front only) 400Wp 410Wp 455Wp(front only) 400Wp(front only) 460Wp Efficiency 19.54% Efficiency 20.17% Efficiency 20.38% 9BB Efficiency 19.54% 9BB 30 Year Linear 25 Year Linear 25 Year Linear Efficiency 20.06% Efficiency 20.78% 30 Year Linear Power Warranty **Power Warranty** Power Warranty 30 Year Linear 25 Year Linear **Power Warranty** Lower weight Power Warranty Power Warranty

Swan

Tiger

JKS Swan Bifacial Features

30 Years Linear Power Warranty

LINEAR PERFORMANCE WARRANTY

12 Year Product Warranty • 30 Year Linear Power Warranty 0.55% Annual Degradation Over 30 years

Performance Warranty

- √ 30 years linear power warranty
- ✓ 2.5% for 1st year and 0.55% from year 2nd to 30th

Bifacial: Test Standard - BSTC

1. STC measurement *

$$G_{front} = 1000 \,\mathrm{W/m^2}$$

 $G_{rear} = 1000 \, \text{W/m}^2$

*The non-illuminated side was covered with non-reflective background and aperture.

2. Determine bifaciality at STC

$$\varphi_{Isc} = \frac{Isc_{rear}}{Isc_{front}}; \quad \varphi_{Voc} = \frac{voc_{rear}}{voc_{front}}; \quad \varphi_{Pmax} = \frac{Pmax_{rear}}{Pmax_{front}}; \quad \varphi = Min(\varphi_{Isc}, \varphi_{Pmax});$$

Front side Rear side

Referencestandard: BSTC

BSTC: Considering module with 1m height and 135W/m2 irradiance of backside

- Front irradiance: 1000W/m²
- Rear irradiance: 135W/m²
- Equivalent irradiance: 1000+ φ -135W/m²
 Spectral irradiance: AM1.5G
- Module temperature: 25° C
 Angle of Incidence: 0°

Introduction to Double-sided Components

Power generation gain up to 25%

White Mesh Backsheet

Transparent backsheet

375W / 380W / 385W / 390W

White mesh backsheet

380W / 385W / 390W / 395W

Transparent mesh backsheet enhances front-side power generation: **5 Wp** improvement.

Notes: transparent mesh backsheet has one more mesh layer with high reflectivity and UV-resistance.

Installation Design: Angle & Height

Install tilt Angle:

°(N)~30°(S)

1. Latitude: 30

⊖=30°

2. Latitude: >30°(N or S)

O=latitude

Energy Gain

Mounting Height:

1.2 m is recommended for fixed racks and 1.5m for trackers

<1.2 m ——— Decreasing rear side energy generation gain

>1.2 m _____ Increasing mounting construction cost

Installation Design: Ground Coverage Ratio

Energy Generation (kWh/kWp/year)

Installation Design: Shading and Frame

Average temperature of frame: 50.75°C

Average temperature of frameless: 50.26°C

The temperature of shading area on bifacial module with frame is very close to that of frameless module

→ Influence of frame shading is negligible

Installation Design: Shading and Temperature

Position 2: transparent bifacial with junction box temperature is higher than ceramic grid bifacial.

Transparent bifacial: 41.19°C

Ceramic grid bifacial: 36.74°C

Transparent bifacial: 50.75°C Ceramic grid bifacial: 50.26°C

Position1: Ceramic grid bifacial temperature of shading cell are consistent with transparent bifacial.

Internal Jinko

SWAN

Temperature curve over time (at the test point)

Source: Jinko R&D

Installation Design: Shading and Temperature

- High albedo ground surface condition
- 50mm wide black backsheet with a distance of 50mm to the module

Installation Design: Mismatch loss of bifacial modules

• With installation height > 1 m → Spatial nonuniformity < 5%

Installation Design: DC/AC ratio and inverter

Bifacial D C/AC ratio D C/A C ratio $= \frac{monofacial}{1 + energy gain}$

Albedo	0.25				0.52			
DC/AC ratio	1.10	1.20	1.32	1.41	1.10	1.20	1.32	1.41
Clipping loss	0	0.06%	0.65%	1.64%	0.04%	0.40%	1.67%	3.17%
Bifacial gain	10.46%	10.46%	9.89%	9.27%	20.18%	19.77%	18.30%	17.05%

O&M: Soiling and Cleaning

Bifacial with dual glass:

There are dirt and mud spots which is not easy to clean

Bifacial with transparent backsheet:

There is no obvious dirt, and very little dust in the middle area

Soiling rate of the rear side is only 11.3% of the front side

(Field test result in Chile)

The frequency of bifacial rear-side cleaning is much lower than the front side

The hydrophobic surface offers excellent **anti-staining features**, making cleaning of the modules easier

Real Energy Generation Gain

3rd Testing Report

that bifacial Module gained
18% in white-painted ground,
keeping same with JINKO
internal test result.

Ground		Water	Grass	Cement	Sand	White-paint
Albedo		~3%	~15%	~32%	~24%	~80%
Actual Data	JINKO	4-5%	6-7%	6-7%	7-9%	17-19%
	Third-Party(CAS)					18%
System PR	Baseline=80%	83-84%	84-86%	84-86%	85-90%	93%-96%

Notes: Chinese Academy of Sciences(CAS) is the highest academic institution of natural sciences, the highest scientific and technological advisory body, and the comprehensive research and development center of natural sciences and high technology in China.

Installation Design: Fixed tilt or Tracking

Energy Gain (%) Simulated, albedo 0.35 Location: Haining, China

Case Study 1: White paint Fixed installation

Swan bifacial reached average 16% bifacial gain compared with monofacial modules, and in summer energy gain was up to 20%.

Case Study 2: Grass Fixed Mounting System

Location: Lv Liang, ShanXi

Province

Tilt Angle:30°

Installation Height: 0.3m-1.2m

above from the ground

Ground Type: Grass/Soil

Testing Date: 2019.1~2019.6

- Gain of bifacial modules is 9.05% compared with monofacial modules
- Bifacial modules gain is proportionally higher in low-irradiance environments
- Energy gain reached 15.07% in January with many overcast days

