

Small components. Big impact.

Cabling of PV installations – Key factors for a successful long-time reliability

PV Magazine Insight on Quality– @ All Energy Australia

YOUR BANKABLE PARTNER

Stäubli Group – three activities, four divisions

STÄUBLI

CORPORATE BANKABILITY

Your bankable partner – More than "just" a product

Service

STÄUBLI

PROJECT BANKABILITY Cabling of PV systems – You can't manage the unknown

Lack of knowledge about eBoS components (cabling/ connectors) ...

- Component \rightarrow technology, norms, materials, production processes
- Installation \rightarrow norms, tools, assembly instructions

... and their relevance for the long-term success of a PV system

- Technical issues and their root cause
- Consequences/ risk on safety, efficiency (LCOE), profitability (ROI)

Resulting in eBoS components failures

Higher costs and losses

Stäubli

(Credit: Walmart lawsuit)

PROJECT BANKABILITY – FIELD DATA

Failures and their financial impact

Solar Bankability project by European Commission's Horizon 2020

Common practice for professional risk assessment to reduce risks for investments in PV projects

- CPN (cost priority number) = cost-based failure mode and effects analysis (FMEA)
- Method was applied to database of >1 million documented failure claims (empirical and statistical)
- Technical failures/risks and their economic impact due downtime and/or power loss & repair/substitution costs
- Indication of the economic risk (in average) of a specific technical risk

Cable & connector with huge financial impact \rightarrow Euro/ kWp/ year loss due to the failure

Risk mitigation measures with objective to minimize the LCOE by optimizing the balance between CAPEX & OPEX

Top 20 technical failures

*www.solarbankability.org

PROJECT BANKABILITY – FIELD DATA

Failures in PV systems – You can't manage the unknown

STÄUBLI

(Credit: Walmart lawsuit)

After reviewing the damage caused by fires, Walmart said in some instances it appeared Tesla personnel made cable connections using connectors that were not compatible.

Walmart said its investigations "quickly discovered that Tesla routinely deployed individuals to inspect the solar systems who lacked basic solar training and knowledge."

PROJECT BANKABILITY – FIELD DATA

Failures in PV systems – Case study

Site location:LATAMSize:> 500 MWInspection:< 6 months after site completion</th>

Failure pattern

- Broken/ burned connectors (several per week)
- Low-voltage at inverter caused by connectors

Consequences

- Performance loss (downtimes)
- Extra service/ repair cost
- Connector insurance claim to module maker and warranty claim to EPC for un-proper installation
- "Hand-over" to O&M company postponed

Solution

■ Replacing failed connectors → change of complete system cabling?

Financial impact

- No string level monitoring, irradiance sensor not functioning
- Downtimes/ service & repair cost?

PROJECT BANKABILITY - FIELD DATA

STÄUBLI Failures in PV systems – Connector failure due to cross-connection

100MW system - 3.112 panels affected so far

- No physical damage, but high temperature
- Mechanical damage, but electrically conducting with high temperature
- String failure due to completely broken connection mechanically and electrically

PROJECT BANKABILITY – CONTACT RESISTANCE

Why connectors (eBoS) can have this big impact

STÄUBLI

PROJECT BANKABILITY

Small components. Big impact.

lop 20 technical failu	es
NV	ERROR MESSAGE
IOD	POTENTIAL INDUCED DEGRADATION

Cable & connector with huge financial impact → Euro/ kWp/ year loss due to the failure

Operation

PROJECT BANKABILITY

Small components. Big impact.

STÄUBLI

PROJECT BANKABILITY

Leverage on LCOE (Levelized Cost of Energy)

PROJECT BANKABILITY – MAIN RISK SOURCES

1) Component Quality – Contact Resistance

13

PROJECT BANKABILITY – MAIN RISK SOURCES

1) Component Quality – Stäubli Technology: MULTILAM

MC4 (MULTILAM Technology)

Competitor Product (no MUTLILAM)

PROJECT BANKABILITY – MAIN RISK SOURCES 2) Installation – Cross-Connection

STÄUBLI

-11K

PROJECT BANKABILITY – MAIN RISK SOURCES

2) Installation – Cross-Connection: Normative References

Global Installation Norm: IEC 62548 – PV Arrays

9.3.9 Plugs, sockets and connectors

Plugs and socket connectors mated together in a PV system shall be of the same type from the same manufacturer. I.e. a **plug from one manufacturer and a socket from another manufacturer or vice versa shall not be used to make a connection.**

UL Standard 6703 – PV Connectors

Conditions of acceptance

"...have been investigated as acceptable for assembly in the field by qualified electricians with factory provided tooling.

"These devices have only been assessed for UL Recognition with specific types of **mated connectors within their product family.**

They have not been assessed to operate with any other similar devices from any other manufacturer."

National Guidelines

Australia, France, Brazil & Turkey

STÄURLI

PROJECT BANKABILITY - FIELD DATA Financial and safety risk

Laboratory testing: Connections 5 years after commissioning

Insulation Resistance		Contact Resistance	
R > 400 MΩ		R Ø 530 μΩ	
Original x Original Ø	1660,00 MΩ	Original x Original Ø	532 μΩ
Cross-Connection Ø	0,06 MΩ	Cross-Connection Ø	<mark>6841</mark> μΩ

PROJECT BANKABILITY

Summery – Set the foundation right at the very early stages

