

View-Factor Vs. Ray Tracing

Jose Alfonso Teruel, CTO Soltec Innovations 18/12/2019

Our bifacial story

2015

'La Silla' solar plant (Chile), 2015. Soltec produced the first solar tracker specifically designed for bifacial modules installed in a utility scale solar plant.

2017

Soltec launchs SF7 Bifacial Single-Axis Tracker.

- Higher mounting height
- Shadow-free backside
- Wide-aisle reflecting surfaces

2018

Soltec Leads with the World's First Bifacial Tracking Evaluation Center

BiTEC (Bifacial Tracker Evaluation Center) measures bifacial performance and its effect on yield.

2019

2+ GW SF7 Bifacial in projects worldwide

Sao Gonçalo-Brazil (475 MW), Cluster MG-Brazil (118MW), Tlaxcala Mag II-Mexico (219,6 MW) among others.

BiTECBifacial Tracker Evaluation Center Livermore - California

LA SILLA 2 YEAR BG= 13%
BiTEC 1 YEAR BG = 7 - 16%

Challenges:

- 1. Acquiring long term bifacial tracking data
- 2. Obtaining real PV plant conditions
- 3. Characterizing variables influencing bifacial
 - Albedo
 - GCR
 - Height
 - Shading and interferences

Determining Bifacial Gain = **BG** = f (Albedo, GCR, H)

Targets:

- Optimizing the SF7 bifacial tracker
- Developing bifacial tracking algorithms

Bifacial Tracker Evaluation Center

Livermore - California

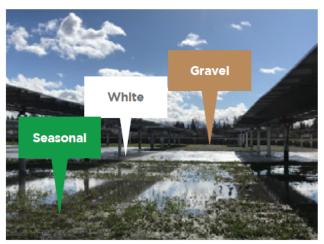


Figure 3. Trackers under different albedo conditions at BiTEC. Dirt test

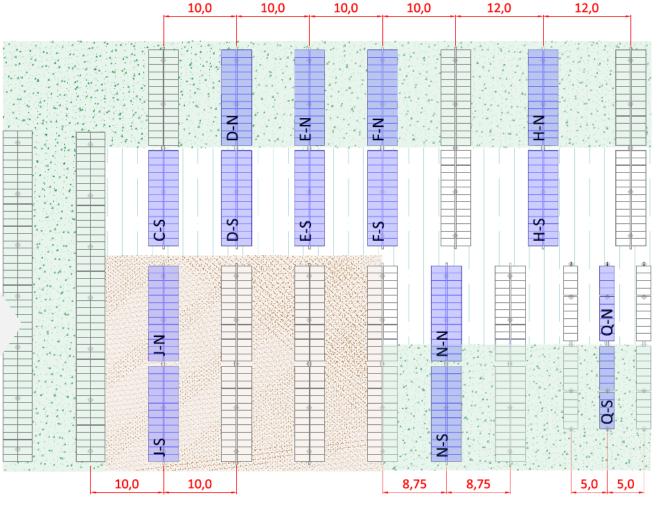
In Blue:	
Modules used for	
measurements	

In White, Brown and Green: White, Gravel and Seasonal albedos respectively

In Red:

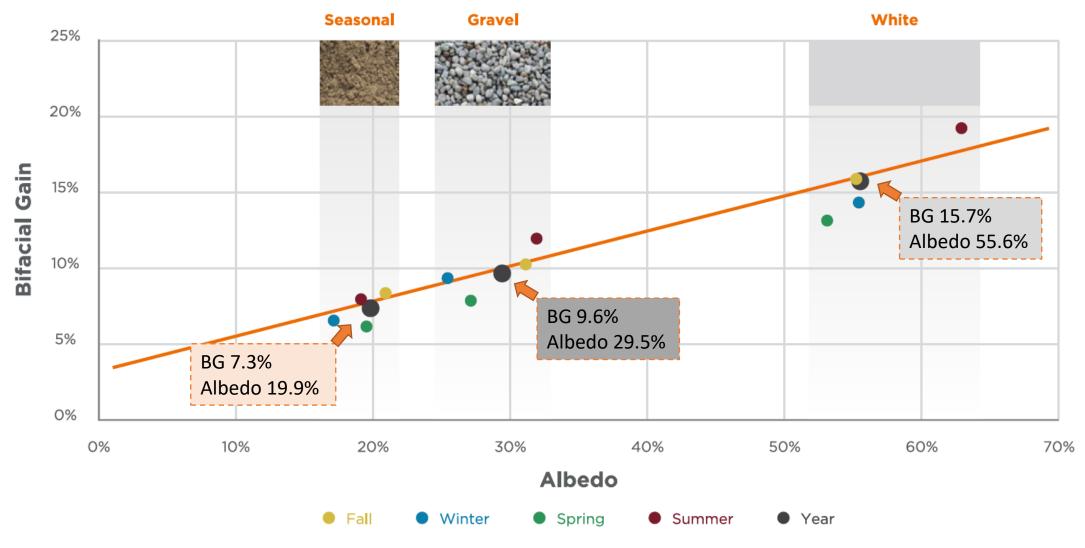
Aisle Pitch in meters:

2P - 12.0, 10.0 and 8.7 meters equivalent to a GCR of 0.33, 0.40 and 0.46 respectively

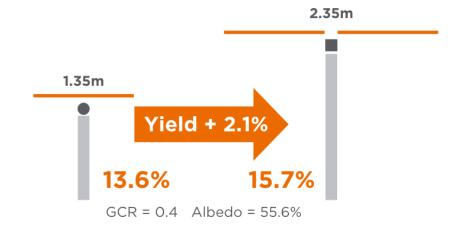

Albedo		Ground Coverage Ratio		
		0.46	0.40	0.33
White	49-65%		2P/1P	
Gravel	24-36%	2P	2P	2P
Seasonal	16-23%		2P/1P	

Test Features: --- 18 Trackers

Albedo: White/Seasonal/Gravel


• GCR: 0.4, 0.33, 0.47

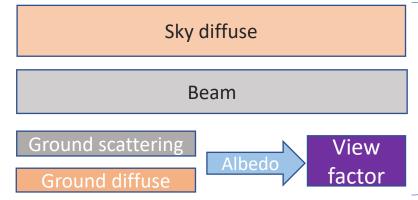
• **Height** 1P, 2P

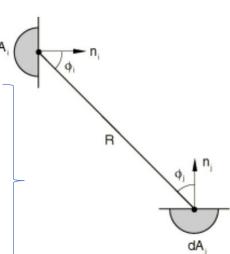


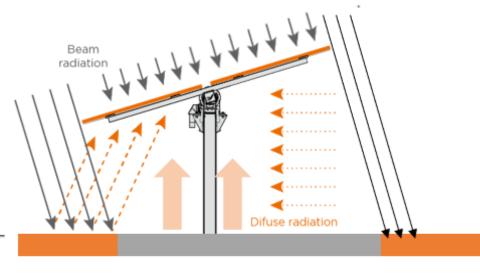
The Bifacial Year – Bifacial Gain

The Bifacial Year - 1P vs 2P

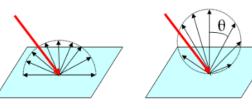
1P Standard tracker	Measured Bifacial Gain	2P SF7 Bifacial
16.8%	Fall	19.2%
12.6%	Winter	14.3%
11.2%	Spring	13.1%
13.7%	Summer	15.8%
13.6%	Year	15.8%

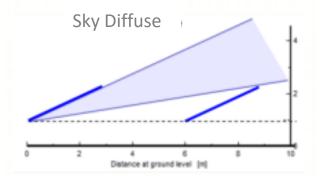

The Bifacial Year – 1P vs 2P differences analysis


Variable	Factor	Respect Total Energy			
	Effect	Δ	1P	SF7 2P Bifacial	Parameters
Rear	View Factor Affection	-1.00%	9.20%	8.20%	Height
Irradiation	Ground scattering	0.74%	0.09%	0.84%	Albedo-model
-0.02%	Diffuse	0.24%	1.51%	1.75%	Height
Interferences	Torque Tube Shading	0.56%	-0.56%	0.00%	Shading Factor
/ Design	Radiation through Gap	0.17%	0.00%	0.17%	Module Transparency
+0.89%	Mismatch	0.16%	-0.47%	-0.31%	Rear G Mismatch
Operation +1.2%	Temperature	1.20%	-5.10%	-3.90%	Uv & Uc
	TOTAL	2.07%			



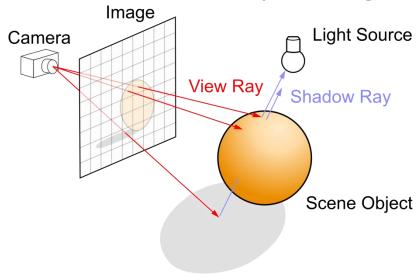
The Bifacial Year – Simulation Models Raytracing vs View Factor


View Factor based software

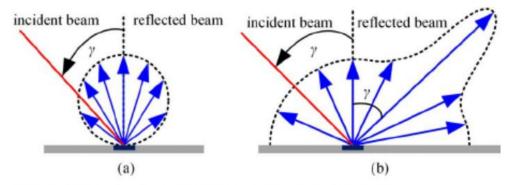


- Irradiation is estimated by adding components contribution
- 1-order reflections
- Simplified ground scattering (Lambertian surfaces)
- Surfaces geometrical relationship are critical
- Not considering non-uniform rear irradiance

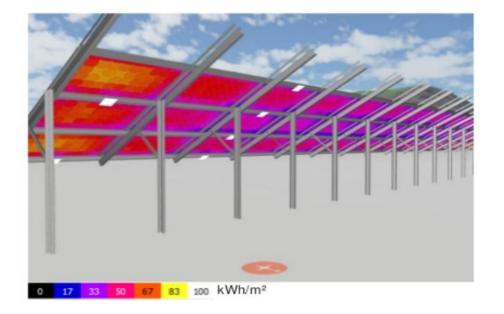
Beam


radiation

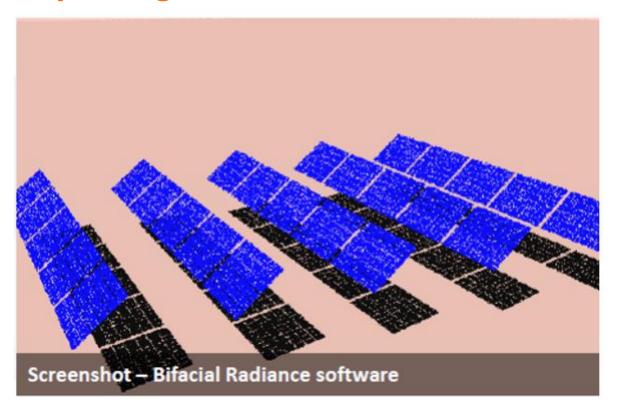
<u>A. Mermoud, B. Wittmer</u> Bifacial shed simulations with PVsyst Bifacial Workshop 2017 25-26.10.2016 Konstanz, Germany http://bifipv-workshop.com/fileadmin/layout/images/Konstanz-2017/2 B. Wittmer PV SYST Bifacial shed simulations.pdf



The Bifacial Year – Simulation Models Raytracing vs View Factor


Ray Tracing based software

- Model traces rays reflecting in all surfaces
- n-order reflections
- Ground scattering with directional component (specular)
- Detailed geometry, contribution of shades is realistic
- Diffuse is estimated by the model


(a) Ideal Lambertian (diffuse) reflection. (b) Diffuse and specular combined reflection [25].

M. Roser and P. Lenz, "Camera-based bidirectional reflectance measurement for road surface reflectivity classification," in Proceedings of IEEE Conference on Intelligent Vehicles Symposium (IEEE, 2010), pp. 340–347

The Bifacial Year – Simulation Models Raytracing vs View Factor

Ray Tracing is (vs View factor)¹:

More complex modelling
Higher computing resources
More accurate

Ray Tracing is proper for²:

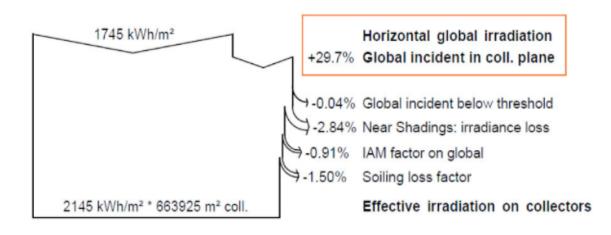
Irradiance with multiple angle
Multiple shades
Racking system
Torque tube
Non uniform irradiation
Detailing shades

Ray Tracing method is the most commonly used to simulate bifacial performance by key PV industry researchers, such as NREL, Canadian Solar, EDF, INES and DNV.

1-Marion B, MacAlpine S, Deline C, Asgharzadeh A, Toor F, Riley D, et al. A practical irradiance model for bifacial PV modules. In: 44th IEEE Photovoltaic Specialists Conference (PVSC), Washington, DC. 2017.

2-S. Ayala Pelaez, C. Deline, P. Greenberg, J. S. Stein, and R. K. Kostuk, "Model and Validation of Single-Axis Tracking with Bifacial PV", IEEE J. Photovoltaics, vol. 9, no. 3, 2019. https://ieeexplore.ieee.org/abstract/document/8644027

The Bifacial Year – Tracking angle


Larger tracking angle

directly facing sun

Loss diagram over the whole year

Maximum tracking angle is important for Bifacials

Pitch (m)	Max Tracking Angle	kWh/kWp/year
SF 7 bifacial	60º	2046
Other trackers	50º	2038

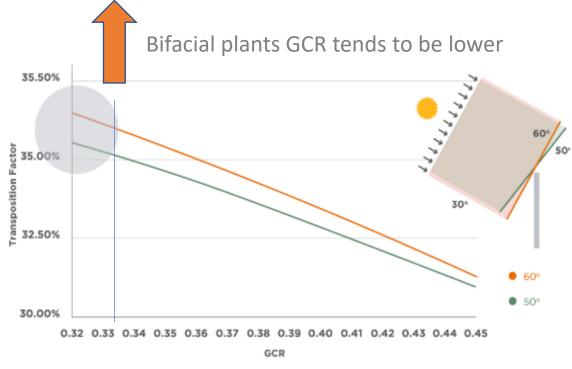


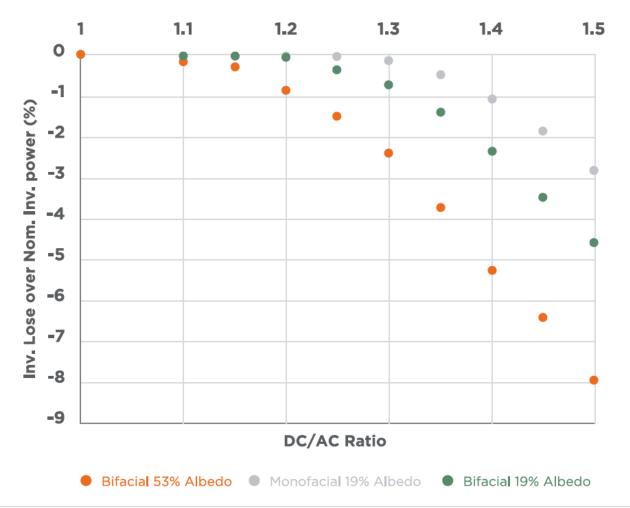
Figure 13. Transposition Factor for different GCR and Maximum Angles. Source: PVSyst

Comparison for 12 meters pitch

The Bifacial Year – PVSyst Configuration

PVSyst bifacial key parameters should be set up for accuracy simulations

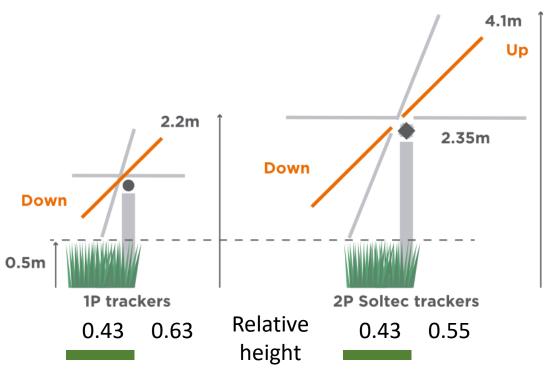
Parameters	Standard 1P trackers	SF7 Bifacial
Angle	_	-60º +60º
Height	1.35 meters	2.35 meters
Structure Shading Factor	5.6%	0%
Shed Transparent Fraction	MT%	(MT* + 3.75) x 1.017 (%)
Thermal Loss factor (Uc)	29 W/m2 k	31 W/m2 k
Thermal Loss Factor (Uv)	0 W/m2 k/m/s	1.6 W/m2 k/m/s
Mismatch Loss Factor	10 %	3.1 %


^{*}MT: Module Transparency from module manufacturer

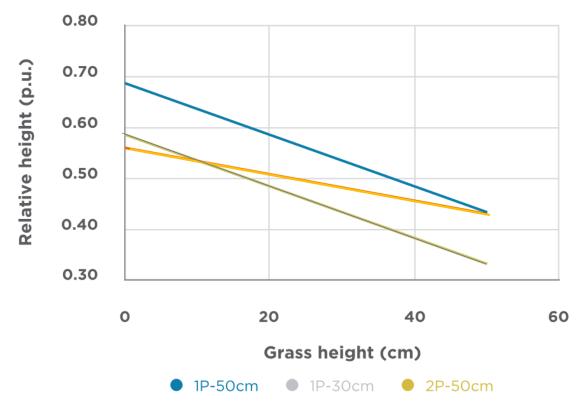
BiTEC Electrical Dimensioning AC/DC Ratio

Lower DC / AC Ratio is recommended for bifacials

Inv. Lose over Nom. Inv. Power			
	Bifa	Monofacial	
DC/AC Ratio	Albedo 53%	Albedo 19%	Albedo 19%
1	0	0	0
1.1	-0.14	0	0
1.15	-0.28	-0.01	0
1.20	-0.85	-0.07	0
1.25	-1.50	-0.33	-0.3
1.30	-2.40	-0.71	-0.11
1.35	-3.73	-1.39	-0.48
1.40	-5.25	-2.34	-1.06
1.45	-6.41	-3.47	-1.83
1.50	-7.93	-4.60	-2.81



BiTEC


Operation and Maintenance Effective relative height

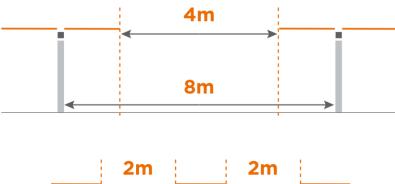
Effective height useful for bifacial reflection depends on the gras level, so relative height does.

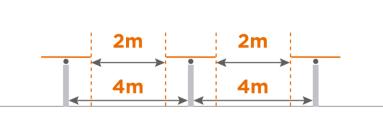
Efective relative height = Tracker height – grass height

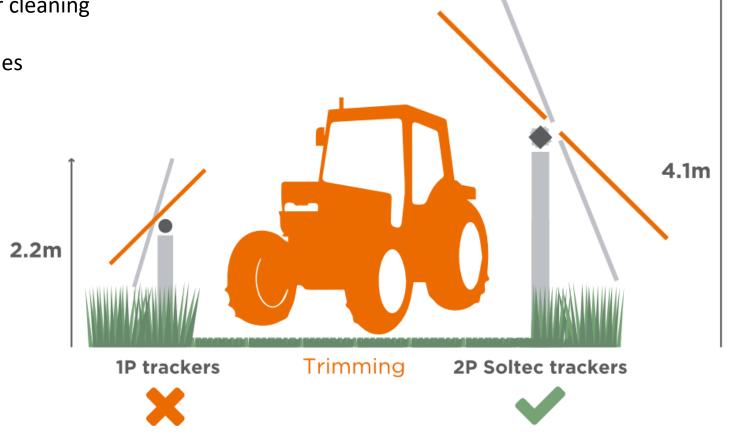
Tracker width

Influence of useful tracker height in relation to vegetation growth 1P Vs. 2P. Source: Soltec

Operation and Maintenance


2P trackers implies easily maintenance for bifacials


Higher clearance allows easily access of machines for trimming


Double module surface = half movement for cleaning

Higher modules = easily cleaning rear side

Double pitch = double free space between iles

BiTEC Operation and Maintenance

Cutting Grass under the tracker and tracker height are important for bifacials

Beth Copanas, Bifacial Considerations from an Engineering, Procurement & Construction (EPC) Perspective BifiPV worshop 2019. Amsterdam 16-19 September 2019. Poster season. http://bifipv-workshop.com/fileadmin/layout/images/bifiPV/presentations2019/bifiPV2019-RES_Copanas.pdf]

Conclusions

- 1 YEAR : September 2018 August 2019 of field measurement.
- Bifacial Gain of 15.7% for SF7 bifacial with albedo of about 55%.
- Bifacial Gain of 7.3% under seasonal albedo for northern California (ground conditions changes monthly)
- Bifacial Gain for 2P SF7 Bifacial is 2.1% higher than 1P tracker.
- This difference is mainly caused by:
 - Lack of shading in the rear side of the module
 - Higher position of the solar panels during operation
 - Lower operating temperature.
- The specific performance and advantages of bifacial modules can be simulated using PVsyst® setting properly bifacial key parameters
- Raytracing simulations have demonstrated to be more accurate than view factor
- Bifacial parameters are provided from BiTEC test:
 - Structure Shading factor
- Thermal Loss factors
- Shed Transparent fraction
- Mismatch Loss factor
- Operation and maintence as cutting gras is relevant with Bifacials
- PV Plant design parameters like GCR, tracking range, AC/DC ratio are relevant with Bifacials

ALBEDO:

- 1 Main influence
- Seasonal variations
- GCR
 - **1** Tracking time
 - Bifacial Ratio
- **†** Height
 - Rear irradiance
 - Mismatch
 - Temperature

