Cracked Cells and PV System Performance

Andrew Gabor
BrightSpot Automation

D2 solar

Powered by SunShot
U.S. Department of Energy

PVRD2

Florida Solar Energy Center
BrightSpot Automation — Boston, MA, USA

EL/PL cameras & light source

Mechanical Load Testing

“Lab” IV and EL in the field

UV Fluorescence Testing

EL Camera CellSpot-PL

Look while you load

LoadSpot

MobileTestSpot

UVF

Drone Image
Standard Testing Conditions (STC)

• 25°C, 1000 W/m²

• How used?
 – Get as close to STC as possible during measurement
 – Apply correction factors to translate results to STC

• Why important?
 – Enables test labs worldwide to obtain similar results
 – In a $/W_p$ world, STC for IV testing determine $
STC - shortcomings

- Some degradation modes with shunting and diode degradation characteristics affect low light performance **more** than at STC
 - PID (Potential Induced Degradation)
 - Cell cracking
 - Shunting in thin film modules
- Series resistance problems may affect low light performance **less** than at STC
- If just measure STC degradation, may miss a big part of the picture
- Energy delivery degradation rates may be worse than STC degradation rates

[Schneller, 2017 NREL PVRW]
Crack effects – single cell

<table>
<thead>
<tr>
<th>Cell</th>
<th>Eff @1Sun</th>
<th>Eff @ 0.4Sun</th>
<th>rel. % diff</th>
<th>Eff @ 0.2Sun</th>
<th>rel. % diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>18.7%</td>
<td>18.5%</td>
<td>-1.0%</td>
<td>17.9%</td>
<td>-3.9%</td>
</tr>
<tr>
<td>Cracked</td>
<td>15.7%</td>
<td>14.7%</td>
<td>-6.7%</td>
<td>13.2%</td>
<td>-15.9%</td>
</tr>
<tr>
<td>Badly Cracked</td>
<td>11.8%</td>
<td>10.0%</td>
<td>-15.4%</td>
<td>8.3%</td>
<td>-29.9%</td>
</tr>
</tbody>
</table>

- Eff loss correlated to total length of cracks
- Worse at lower irradiances/currents due to shunting/recombination
Crack effects - module

Sinton FMT-500 IV Flash tester (Eff vs Irradiance)

- Faster falloff at low irradiance due to cracks

Initial

After static loading
Energy Delivery Calcs (hypothetical)

• Might miss significant energy loss by just measuring 1-Sun P_{max}

Most valuable electrons
How Do Cracks Evolve?

- **Microcracks** (<1mm) are nuclei of most cracks
 - Soldering, laser cutting, rear impacts, <-30°C exposure
 - Front side pressure puts cells into tension and microcracks propagate into full cracks visible by EL
- Front side hail or Rear side impacts on polymer backsheets can create “X” or “spider cracks”
 - Can later propagate with front side pressure
- Strong shocks (dropped panel) can also create cracks
- Most cracks are closed at first
 - Metallization continuous across crack
 - Minimal power loss at STC
- Cracks open over time with
 - Cyclic loading
 - Thermal cycling

[Schneller, 2019 IEEE PVSC]
LoadSpot – Mechanical Load Tester

• Static and Cyclic loading vs EL(time)

• See huge differences between panels

Look while you load
Electroluminescence (EL) Equipment

BrightSpot Automation
Low-cost, high resolution solutions

AePVI
Drone solution

Daylight solution
Contactless & Daylight solution

Auto histogram stretch software

High throughput string biasing solution
UV Fluorescence

Every O&M group should have a UVF handheld system!

Pros
- No biasing of panels!
- Quick
- Low cost
- Tell when cracks happened

Cons
- Not for glass/glass panels
- Not for panels < 1 year in field
- Can’t tell how “bad” a crack is

Handheld

Pole-mount

Drone-mount

Smart UV Light

© BrightSpot Automation LLC
RailPad — protective compressive stress

- Greatly reduce deflection vs load
- Prevent cracks from forming
- Prevent existing cracks from opening
- New and Retrofit designs
- Better financing and insurance rates?
- Contact BrightSpot for field trials
Technology Trends – overall in the right direction!

Lower Crack Risk
- Glass/glass – no tensile stress
- More interconnect wires – smaller disconnected areas
- Conductive adhesive (some shingled) - fewer microcracks
- Parallel wiring – cells less likely to enter reverse bias
- Better packaging
- More EL quality control testing – factory, pre and post install

Increased Crack Risk
- Laser cut cells (half-cut, shingled) - microcracks
- Larger modules - more deflection and tensile stress
- Thinner wafers – easier crack propagation

[Crack Worry Trendline]

[Gabor, 2017 NREL PVRW]
Thank You

- gabor@brightspotautomation.com
- www.brightspotautomation.com/products/
- www.brightspotautomation.com/publications/