Webinar powered by

Jurchen Technology

02 July 2020

CEST, Berlin 10am - 11am

1.30pm - 2.30pm | IST, Delhi

4pm – 5pm

CST, Beijing

6pm – 7pm

AEST, Sydney

Mark Hutchins Editor | pv magazine

Maximizing ground coverage and cutting installation costs for a lower LCOE

Nir Dekel **Jurchen Technology**

Herman Goulooze Volta Solar

PEG Substructure System Nir Dekel, Sales Manager 2nd July 2020

PEG: Topics

- 1. Jurchen Technology Company Introduction
- 2. System Benefits
- 3. Design Characteristics
- 4. Installation
- 5. O&M
- 6. Bankability Report
- 7. Global Presence & Case Studies
- 8. Summary: Benefits, Website, How to reach us

PEG: Jurchen Technology Overview

- Founded in 2009
- HQ in Germany
- Designing and manufacturing solar substructure and DC cabling
- Substructures sold for >2.6GW projects worldwide
- DC cabling sold for >3GW projects worldwide

Limondale (AUS)
Nominal capacity: 349.00 MWp
Components: DC Cabling
under construction

Barcaldine (AUS)
Nominal capacity: 10.80 MWp
Components: Substructure
Commissioning: 2017

PEG: Jurchen Technology Product Line

Substructures:

PEG system

Uni base system

Double base system

DC cabling:

High quality cable harnesses

Cabling for floating PV

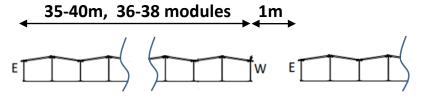
PEG: Main Benefits

- Extremely high land use. Comparison per acre:
 - ~225% more yield vs trackers and other fixed-tilt systems
 - ~3 times more DC vs trackers, ~twice more vs fixed-tilt
- Extremely cost-effective CAPEX (supply, freight and installations)
- Low profile & shallow foundations, <1m above & below ground
- Very light system, ~12.5 kg per kWp (400W modules)
- Proven globally, over 200MWp installed

The PEG system, an ocean of modules covering the complete site with small gaps between the blocks

PEG: Land Use

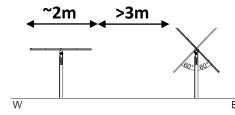
Layout example: ~3 times more DC with PEG vs Tracker


PV AREA

PEG

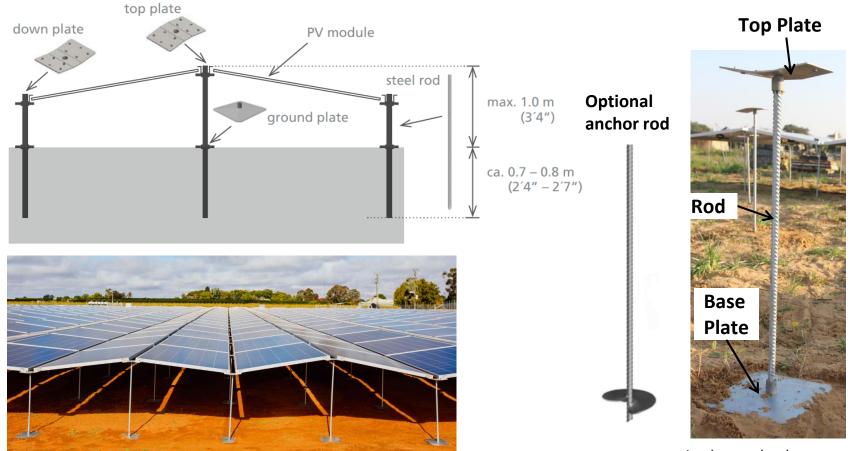
~20.5MWp PEG

Mainly DC system...
Only few gaps, 1m each


Tracker

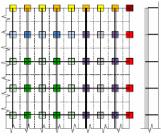
~7.0MWp

Mainly empty space...


Many large gaps, >3m each

PEG: Design Characteristics

- Only 3 items: Steel rod, ground plate and top plate
- Modules at 8 deg E-W laid on the top plates under the corners
- Optional anchor rods for sandy soil or shallow foundations


PEG: Design Robustness

- Wind Tunnel tests successfully completed by IFI in Germany
- Max wind speed (ASCII 7-10): 160mph (~257km/hour)
- Compliance with Australian wind regions A, B and C (tropical Australia)

PEG wind tunnel tests done by IFI

PEG is **certified for cyclone regions** of tropical Australia!

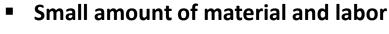
🗂 gamcoi	Proud Member of
	CONSULT AUSTRAL

	CONSTILL AUSTRALIA	72 Cell Modules, Wind Region C, Terrain Category 2			
CONSULT AUSTRALIA		Resultant Wind Pressure (incl Dead Load), kPa		Resultant Force on PEG (for pull testing), kN	
	Fing Engineering	Uplift	Downforce	Uplift	Downforce
	Zone B - 1st Row	0.92	0.94	1.59	0.93
	Zone B - Other Rows	0.92	0.74	1.59	0.73
	Zone A - 1st Row	0.72	0.33	1.14	0.33
	Zone A - Other Rows	0.51	0.33	0.68	0.33

PEG: Installation Methodology

Construction practices are irrelevant!

From **E P C**onstruction



- Without concrete, trenching and heavy machines
- Working height is ~1m
- **Lightweight substructure**, <3kg (~6.6lb) per item

PEG: Installation Process

- Extremely simple, safe and fast installation
- Heavy machinery not required. Electric hammer and hydraulic pressing tool
- ~0.8 man-hours / kWp for all DC plant
- Ramming depth up to 800mm (2.6ft) underground
- >MWp installed per week

PEG: 0&M

- "Gal-In", a lightweight and efficient manual cleaning, 18kg, requires one man-hour to clean 250 modules
- System access from underneath using trolley, along the walking paths between the blocks and remote access using drone
- Methods for Vegetation control: Fabric sheet, mowing robot, chemicals and crust dust in top soil

"Gal-In" cleaning system

Trolley to access underneath the PEG

Mowing robot machine

Fabric sheet under the PEG

PEG: Bankability

- Debt finance already provided, for PEG projects in Australia
- DNV-GL bankability report completed in June 2020

DNV-GL

TECHNOLOGY ASSESSMENT

PEG Solar Racking

Jurchen Technology GmbH

Document No.: 10188745-OAL-R-01

PEG's main advantage is in the efficiency of land use (the energy output per acre) and CAPEX reduction.

Energy land-use efficiency (MWh/acre/yr)				
Location	Gain PEG vs. FT/SAT			
St. Cloud,	+217% FT			
Minnesota	+224% SAT			
Las Vegas,	+227% FT			
Nevada	+222% SAT			
Raleigh, North	+231% FT			
Carolina	+241% SAT			

the area-related energy harvest per acre is almost the same for either the fixed-tilt or single-axis tracker systems, while the PEG system exhibits a comparative 227% advantage over either of these types.

The PEG product has been installed in the field since 2014 and Jurchen has not received any warranty claims to date.

Jurchen has performed geotechnical and structural engineering which is typical for a product of this type,

Mounting	GCR (Ground
type	Cover Ratio)
PEG	≈1.0
Fixed-tilt,	US locations: 0.40
ground-	Tropical locations:
mount	0.87-0.93
Single-axis tracker	0.33

PEG: Global Presence

Over 200MWp PEG systems installed worldwide

Barcaldine, Qld, Australia, 10.8MWp

Goondiwindi, Qld, Australia, 4.8MWp

Mesilot, Israel, 4.6MWp

Hoensbroek, Netherlands, 2MWp

Haidt, Germany, 1.7MWp

Somaliland, 500kWp

Adam, Oman, 500kWp

Coronel Suarez, Argentina, 333kWp

Tan Chau, Vietnam, 22kWp

PEG: Case Studies

Example of PEG success stories:

Goondiwindi, Qld, Australia, 4.8MWp

The first unsubsidized commercial solar project in Australia

Mesilot, Israel, 4.6MWp

PEG the only system to achieve the required DC capacity and yield

Dareton, NSW, Australia, 3.7MWp Low profile PEG (<1m) essential for permit process & neighbors' consent

Barcaldine, Qld, Australia, 10.8MWp

Government OH&S audit indicated PEG installation safety standards are exceptionally high

PEG: PEG projects in the Netherlands

- Volta Solar: Dutch EPC, Owned by Essent/EON, build 60-80MW/Yr
- More than 40MWp PEG installed in the Netherlands over 17 sites.

Key benefits of the PEG system:

- Maximizing land use through the PEG flexible design, for land constrained sites and sites with challenging shape
- Significantly reduction of council approval risks, through the PEG low profile and visual impact
- Reducing soil risks and tests, due to the PEG flexible foundation with 40cm underground ramming depth using the anchor rods

PEG: Summary

- By far the most efficient land use (MWh per Hectare), ~225% more than Trackers & Fixed-Tilt
- Competitive LCOE vs Trackers and Fixed-Tilt (AUS customers feedback)
- Significant CAPEX reduction (both supply and installations)
- Simpler permit process, due to lower profile & shallow foundation
- The PEG online:

Data sheet:

Case studies:

Projects list:

...and much more, available at: www.jurchen-technology.com

Jurchen Technology

Headquarters Germany:

Prinz-Ludwig-Straße 5, 97264 Helmstadt, Germany, Germany

Phone: +49 9369 98229-6600, Email: info@jurchen-technology.com

