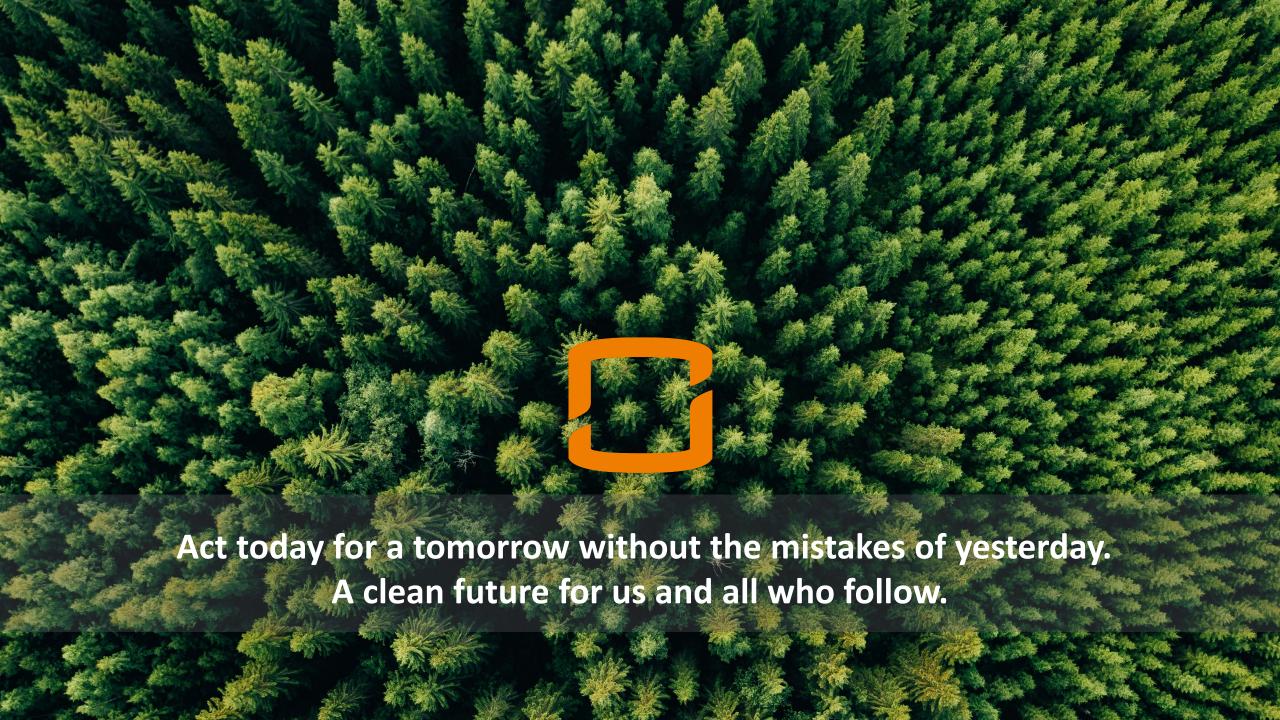
Webinar powered by

Sungrow

23 July 2020 11 AM – 12 PM | CEST, Berlin 10 AM – 11 AM | BST, London

Marian Willuhn

Editor | pv magazine


Central vs. String Inverters: Myth & Reality

Jeremy Powell
Sungrow UK

Panagiotis Kamperidis
Sungrow UK

SUNGROW POWER HOUR

NEXT GENERATION UTILITY SOLUTIONS

YOUR SPEAKERS FOR TODAY

JEREMY POWELL
KEY ACCOUNT MANAGER
SUNGROW UK

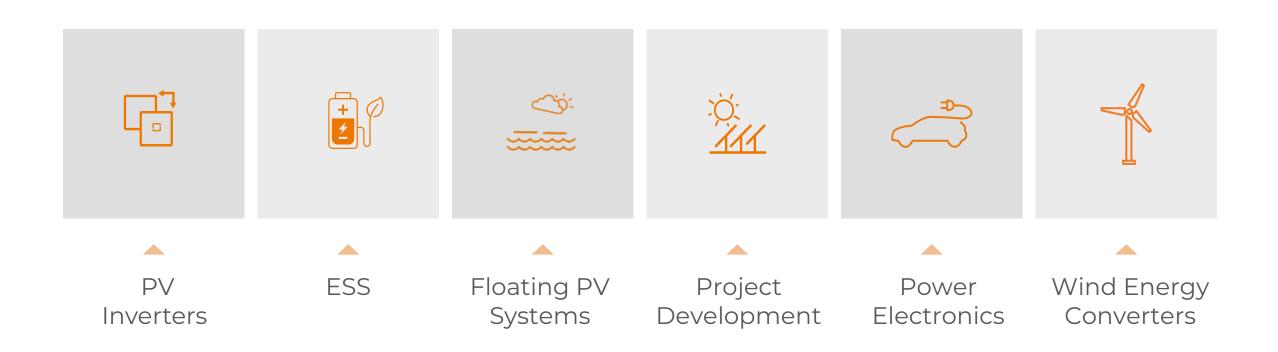
SALES & BUSINESS DELEVOPMENT

j.powell@sungrow-emea.com M 0044 7940 910756

PANOS KAMPERIDIS
PRODUCT MANAGER
SUNGROW UK

TECHNICAL SALES & UTILITY PRODUCT SPECIALIZATION

5


p.kamperidis@sungrow-emea.com M 0044 7475 526773

A focused leader in inverter technology

Committed to providing world-leading clean power solutions

Core technology is the permanent power of Sungrow

\$90 M

Invested in R&D in 2019

2000+

Patent applications accumulated

40%+

Proportion of technical R&D personnel

The world's largest inverter factory

50 GW / Year Global Production Capacity

China Factory 47 GW / Year ESS 6 GW / 6GWh India Factory 3 GW / Year

An extensive footprint across the globe

3 Service offices
11 Local warehouses

60+ Countries

EUROPE

6 Service offices 16 Local warehouses

MIDDLE EAST

1 Service office 1 Local warehouses

SOUTHERN AFRICA

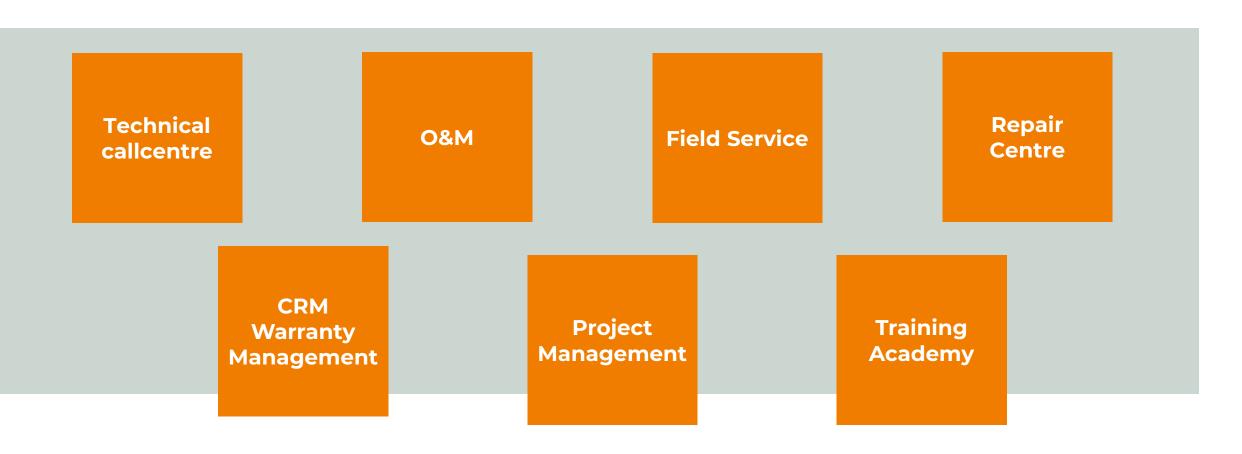
1 Service office 1 Local warehouses

50+ Service Outlets

APAC


7 Service offices
10 Local warehouses

20+

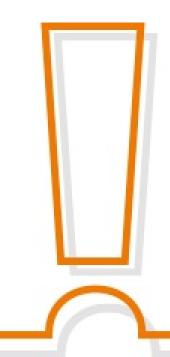

International Subsidiaries

UK Office – Milton Keynes

Global project reach

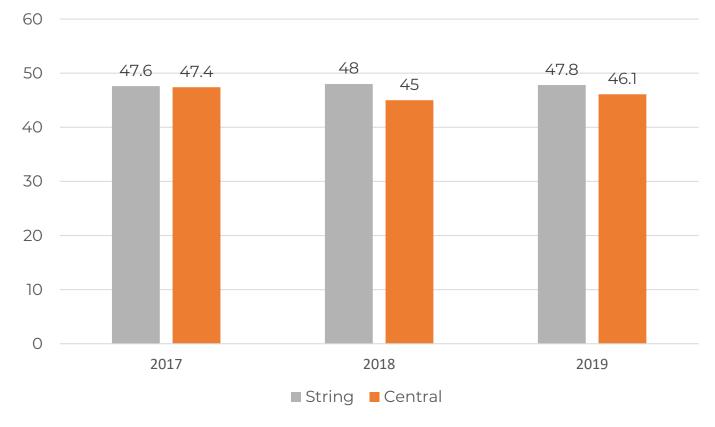
Added value service for you

Central vs String Inverters: Myth & Reality



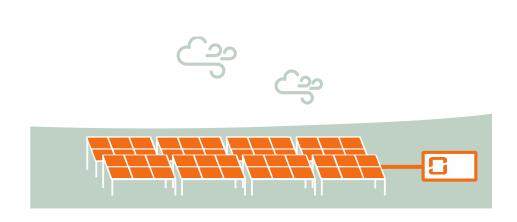
The \$1mil question

Are strings or centrals a better option, overall, for my project?



Let's explore!

What is the industry doing





- Both technologies are relevant in the global PV arena
- Both concepts have a strong following in the developer/EPC community
- Both financial models equally viable, not necessarily for the same projects though

Source: IHS Markit

Head-to-head: centrals vs strings

CASE STUDY 1

Size: 50MWac @40°C

Location: United Kingdom

Mounting type: Fixed mount

Terrain: Flat

DC/AC ratio: 150%

Inverter model: SG3125HV-30 (central)

CASE STUDY 2

Size: 10MWac @45°C

Location: Spain

Mounting type: Single-axis tracker

Terrain: Fairly hilly

DC/AC ratio: 110%

Inverter model: SG250HX (string)

Analysis assumptions

- The project lifetime is 20 years.
- No repowering is considered in either case study. All inverters covered by a warranty extension from Y6 to Y20.
- Annual module degradation rate taken as 0.5% / year.
- The analysis ignores time-value-of-money effects.
- Simple relative-performance metric:

TPI = Technology Performance Index =
$$\frac{\Delta CAPEX + \Delta REVENUE_{YEAR1-20} + \Delta OPEX_{YEAR1-2}}{MW_{AC}}$$

Case Study 1: CAPEX

CENTRALS

Item	Quantity
6.25MVA stations	7 units
3.15MVA stations	1 units
24-input combiners	246 units
300mm ² 1-core AL/XLPE/AWA/PVC cable	93,480m

STRINGS

Item	Quantity
SG250HX inverter	223 units
6.3MVA TX station	8 units
240mm ² 3-core + 120mm ² 1-core AL/XLPE/SWA/PVC cable (TN earthing)	42,370m

Total **€ 2,522,988**

ΔCAPEX = € **305,140**

Total € 2,828,128

Case Study 1: REVENUE_{YEAR1-20}

CENTRALS

	MWhs
Y1-Y20 Yield	1,474,071

STRINGS

	MWhs
Y1-Y20 Yield	1,477,914

REVENUE_{Y1-20 @ €60/MWh} € 88,444,260

ΔREVENUE_{YEAR1-20} = - € 230,580

REVENUE_{Y1-20 @ €60/MWh} € 88,674,840

Notes:

¹ Cable loss profiles: 1.5% DC / 0.1% AC (centrals)

0.6% DC / 1.1% AC (strings)

² Mismatch loss profiles: 0.6% (centrals) 0.4% (strings)

Case Study 1: OPEX_{YEAR1-20}

CENTRALS

Maintenance type	Euro
Preventive	135,046
Corrective	369,167

STRINGS

Maintenance type	Euro
Preventive	168,807
Corrective	595,721

Total **€ 504,213**

Total € **764,528**

Notes:

- ¹ OPEX covers warranty extensions up to Y20 and labour cost for all inverter maintenance works.
- 2 All O&M work is subcontracted to 3d parties (no in-house personnel available).
- ³ A 2-man crew assumed for all works, except for centrals' corrective maintenance (1-man crew).
- ⁴ Corrective maintenance is carried out on an annual basis for both centrals and strings.

Case Study 2: CAPEX

CENTRALS

Item	Quantity
6.25MVA stations	1 units
3.15MVA stations	1 units
24-input combiners	35 units
300mm ² 1-core AL/XLPE/AWA/PVC cable	9,100m

STRINGS

<i>Item</i>	Quantity
SG250HX inverter	48 units
6.3MVA TX station	2 units
240mm ² 3-core AL/XLPE/SWA/PVC cable (IT earthing)	6,240m

Total **€ 452,210**

ΔCAPEX = € **133,478**

Total **€ 585,688**

Case Study 2: REVENUE_{YEAR1-20}

CENTRALS

	MWhs
Y1-Y20 Yield	455,065

STRINGS

	MWhs
Y1-Y20 Yield	460,293

REVENUE_{Y1-20 @ €60/MWh} € **27,303,900**

ΔREVENUE_{YEAR1-20} = - € 313,680

REVENUE_{Y1-20 @ €60/MWh} € 27,617,580

Notes:

¹ Cable loss profiles: 1.37% DC / 0.1% AC (centrals)

0.38% DC / 0.76% AC (strings)

² Mismatch loss profiles: 1.0% (centrals) 0.4% (strings)

Case Study 2: OPEX_{YEAR1-20}

CENTRALS

Maintenance type	Euro
Preventive	33,761
Corrective	76,861

STRINGS

Maintenance type	Euro
Preventive	0
Corrective	114,506

Total **€ 110,622**

Total € 114,506

Notes:

- ¹ OPEX covers warranty extensions up to Y20 and labour cost for all centrals' maintenance works.
- 2 Central's O&M work is subcontracted to 3d parties. Strings' O&M handled by in-house personnel (zero labour).
- ³ A 2-man crew assumed for all works, except for centrals' corrective maintenance (1-man crew).
- ⁴ Corrective maintenance is carried out on an annual basis for both centrals and strings.

Head-to-head: outcome

Case study: 1 UK 50MW

Strings' TPI = - € 6,697 / MW_{AC}

Case study: 2
Spain 10MW

Strings' TPI =
$$17,631 / MW_{AC}$$

or
Centrals' TPI = $17,631 / MW_{AC}$

i.e. the savings' potential of both technologies can be positive, and hence make more financial sense over their counterpart, **under specific circumstances**.

Conclusions

Technology decision strongly dependent on factors such as:

- Business strategy & key project drivers (min CAPEX, max PR etc.)
- In-house expertise and supply-chain optimisation (EPC / owner)
- Geography & solar resource
- O&M arrangements

Though the cut-off is far from clear, there is strong evidence that centrals' financial advantage scales with project size, a trend that has not been reversed in the last 10-15 years.

A one-size-fits-all approach seems to lead to sub-optimal decisions.

Thorough investigation of all options is advised at all times.

Inverter **status** accessible from **iSolarCloud app**

Provides energy for **2,100 homes**

Completion date **2018**

Capacity

10 MWp

Sungrow string & central portfolio

CLEAN POWER FOR ALL

www.sungrowpower.com