this **Webinar** is powered by Huasun

pv magazine Webinars

11 August 2022

10:00 am – 11:00 am | CEST, Berlin 9:00 am – 10:00 am | BST, London 11:00 am – 12:00 pm | EEST, Athens

High performance at scale with HJT

Mark Hutchins
Editor
pv magazine

Wang Wenjing
CTO
Huasun

Matthew Jin
GM of sales center
Huasun

Dr. Djarber BerrianPV Innovation and Design Engineer
Belectric

Welcome!

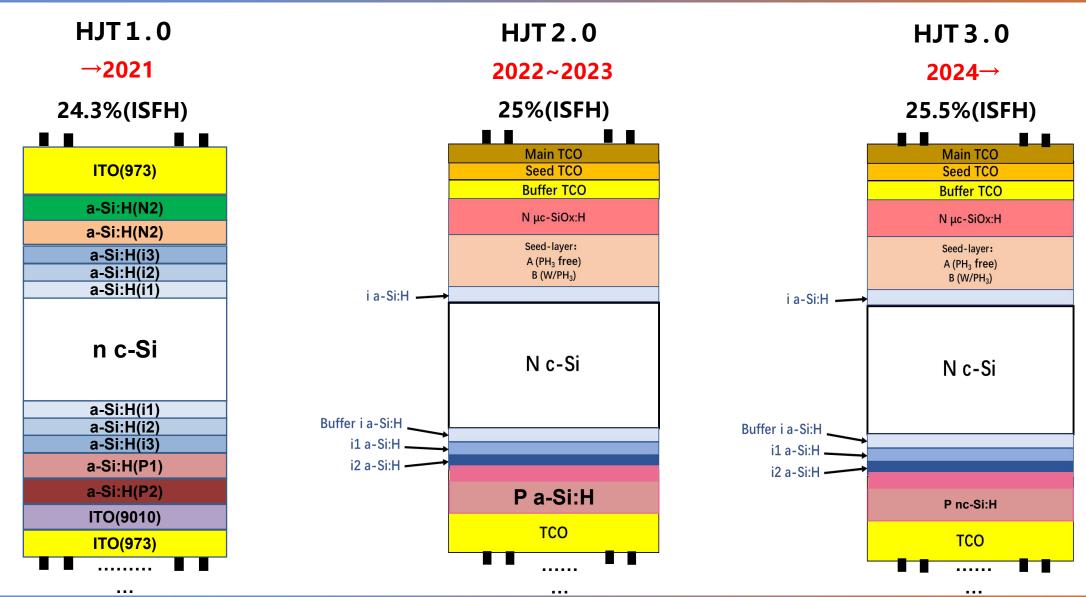
Do you have any questions? ?

Send them in via the Q&A tab. We aim to answer as many as we can today!

You can also let us know of any tech problems there.

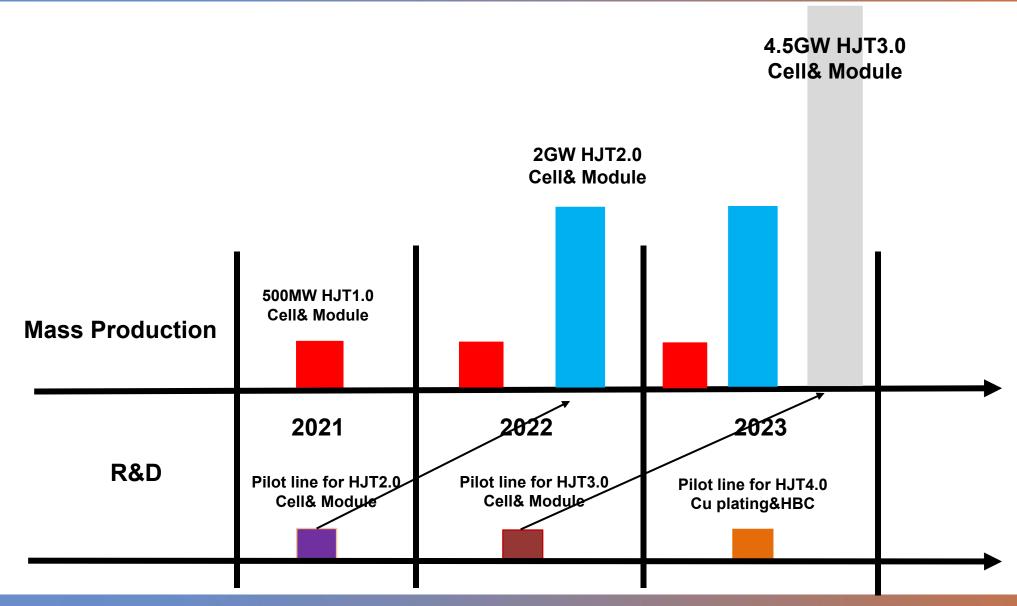
We are recording this webinar today.

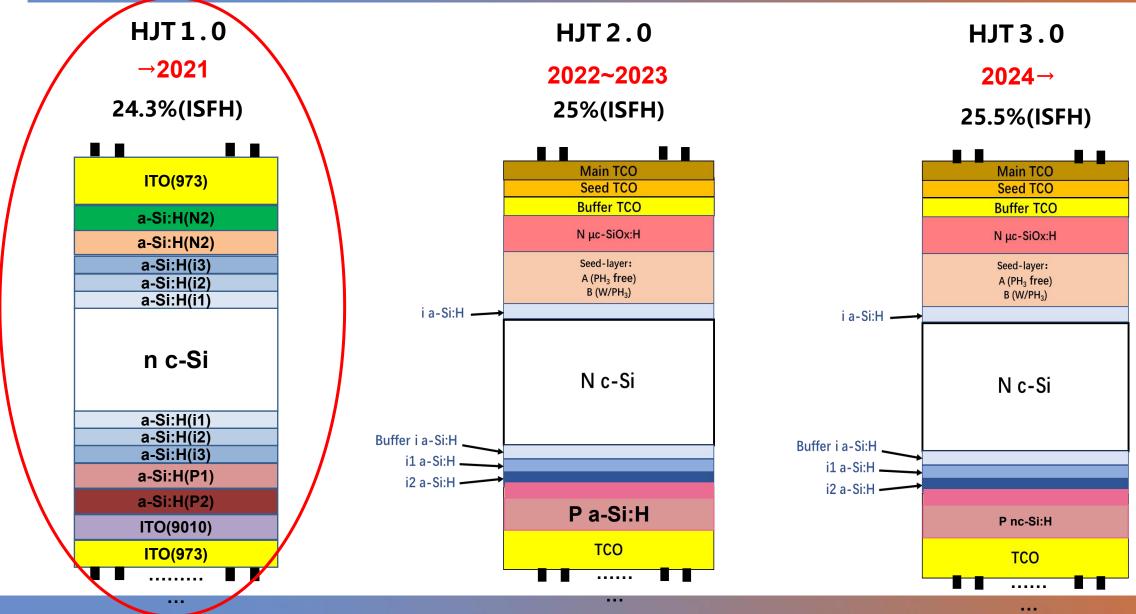
We'll let you know by email where to find it and the slide deck, so you can re-watch it at your convenience.


HJT Mass Production in Huasun

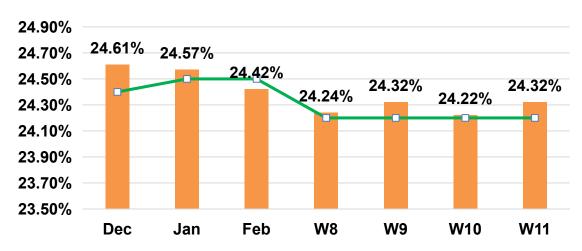
Wenjing Wang

Huasun


Progress of HJT Technology in Mass Production


The road map of HJT technology in Huasun

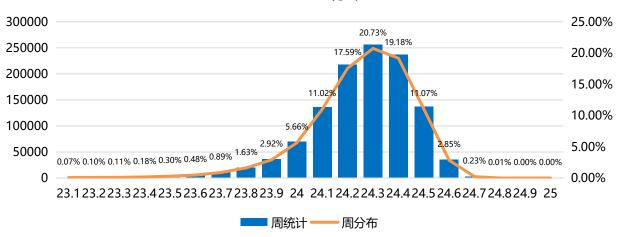
Progress of HJT Technology in Mass Production


Mass production of HJT in Huasun

Average efficiency: 24.3% for 12BB

Yeld: ~98%

Average Eta to 2022 ____ 实际 --- 目标

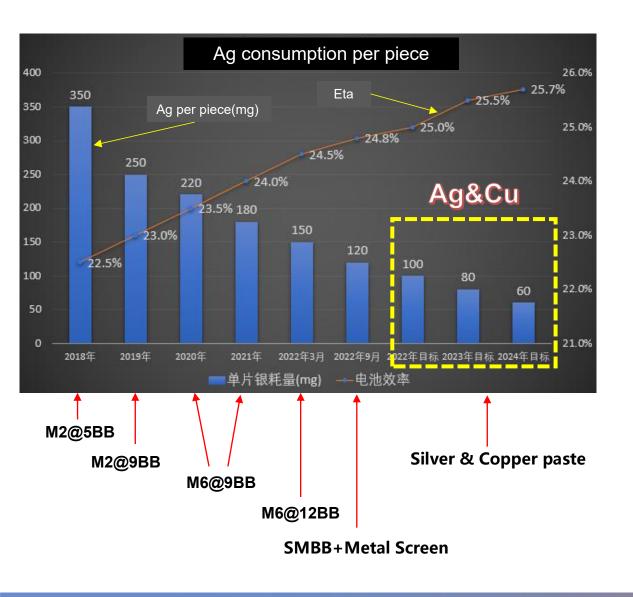


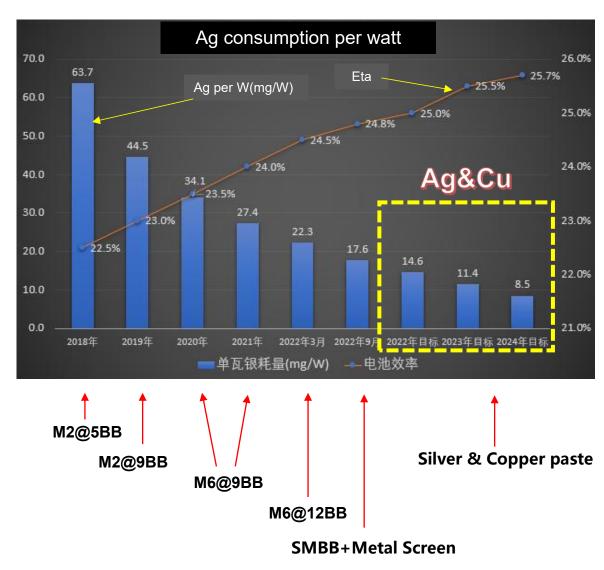
2022 Production Yield

Week cell Pmax of 11 week of 2022

W11Pmax分布

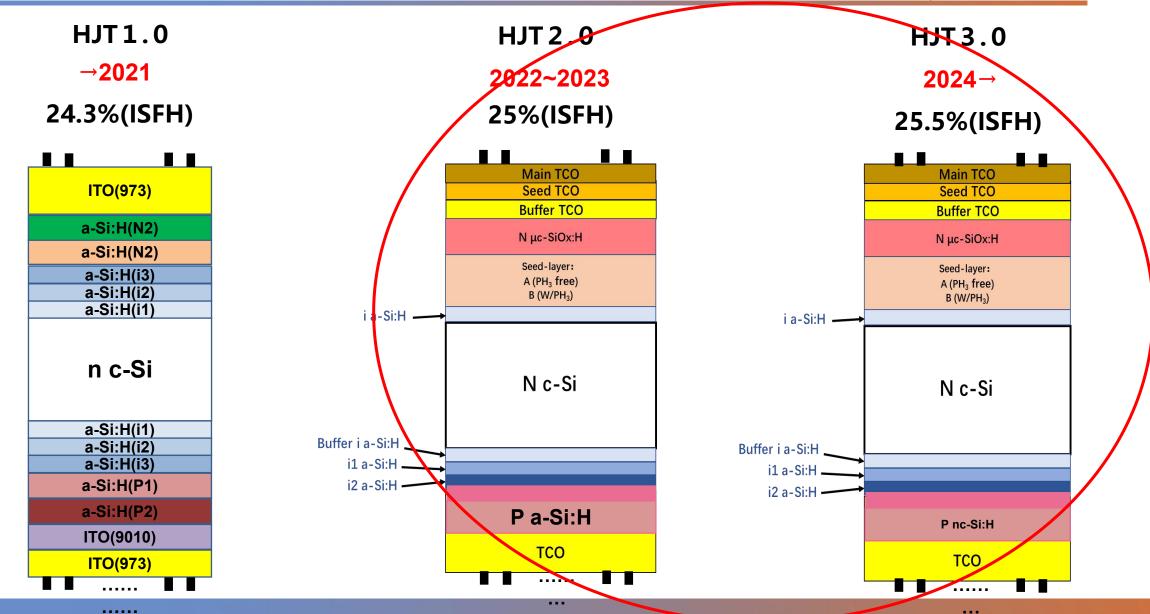
Efficiency and CTM in different Companies in China




No.	Company	Capacity (MW)	Cell Size	Eta(%)	Module type	Module Power (W)	СТМ	Equivalent Eta(%) @CTM=100%	Record Eta (%)	Ag cost (mg/piece)	Ag cost (mg/W)
1	TW-ZW	100	M2-156	24.09%	60-half	345	99.40%	23.90%	25.45%	170	0.69
	TW-Hefei	180	G12-210half	24.04%	/	/	96.50%	23.20%	/	150	0.68
	TW-Jintang	1000	M60166	23.94%	72-half	475	100.30%	24.01%	/	185	0.67
2	Longji	/	M6-166	/	/	/	/	/	26.30%	/	/
3	GS	500	G-158	24.00%	60-half	358	99.50%	23.90%	25.20%	150	0.6
4	AK	220	G1-158	24.60%	72-half	435	97.50%	24.00%	/	180	0.71
5	Jinergy	200	M6-166	24.20%	72-half	466	97.50%	23.80%	24.70%	200	0.73
6	Huasun	500	M6-166	24.40%	72-half	472	98.00%	23.90%	25.26%	150	0.68
7	CSI	250	M10-182half	24.40%	/	/	97.00%	23.70%	/	150	/
8	JA	250	M10-182half	/	/	/	/	/	/	/	/

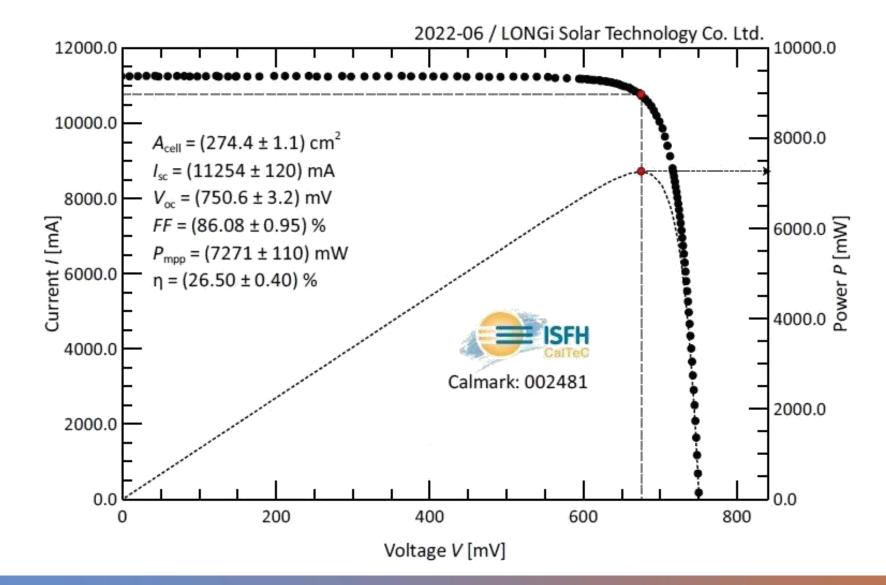
Source: Meng Fanying, CSPV17, 2021, Suzhou, 2021.12.7-9

The road map of reducing the cost of electrode of HJT



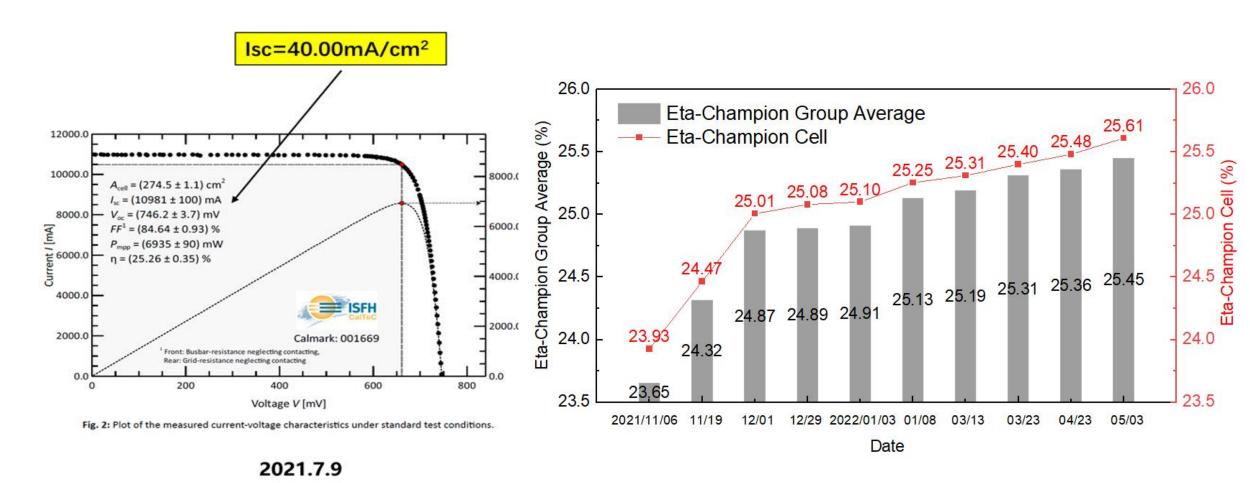

Progress of HJT Technology in Mass Production

Efficiency record for HJT cell



New record of HJT solar cell

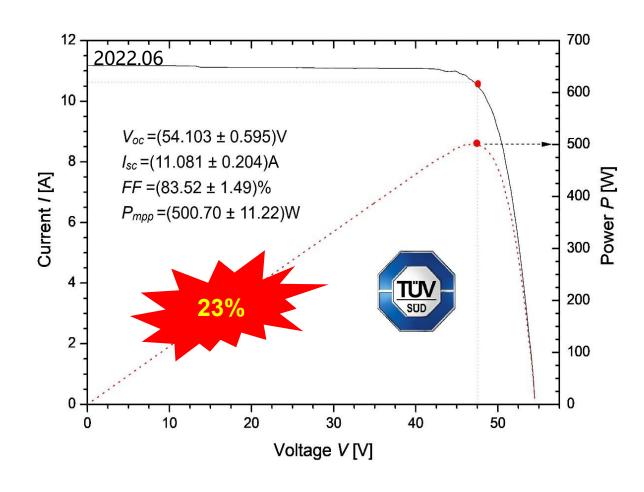
Data for best HJT cell

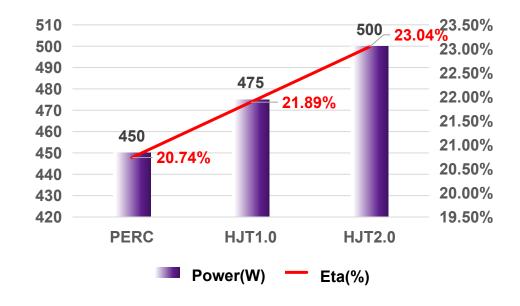


Unit	Eff(%)	Voc(mV)	Jsc (mA/cm²)	FF(%)	Bifacial(%)	Size(cm²)	Time
Longi	26.5*	750.6	41.01	86.08		274.4	2022.6
Maxwell/Sun Drive	26.07*	746.7*	40.71	85.74		274.3	2022.3.17
Longi	26.3*	750.2	40.49	86.59		274.3	2021.10.28
Longi	25.82*	750.4	40.20	85.57		274.5	2021.10.24
Maxwell/Sun Drive	25.54*	746.0	40.23	85.08		274.5	2021.9.7
Huasun/Max well	25.26*	746.2	40.00	84.64		274.50	2021.7.9
Longi	25.26*	748.5	39.48	85.46		244.55	2021.6.1
Huasun/Max well	25.23*	745.6	39.80	85.03		274.3	2021.7.2
Hanergy	25.11*	747.0	39.55	84.98		244.45/Cz	2019.12
Huasun/Max well	25.05*	745.5	39.61	84.82		274.3/Cz	2021.5
Maxwell	24.61*	746.0	39.12	84.33		244.39/Cz	2021
Zhongwei	24.05*	744.6	38.60	83.67		244.43	2020
Kaneka	25.10	738.0	40.8	83.5		151.9/Cz	2019

* ISFH

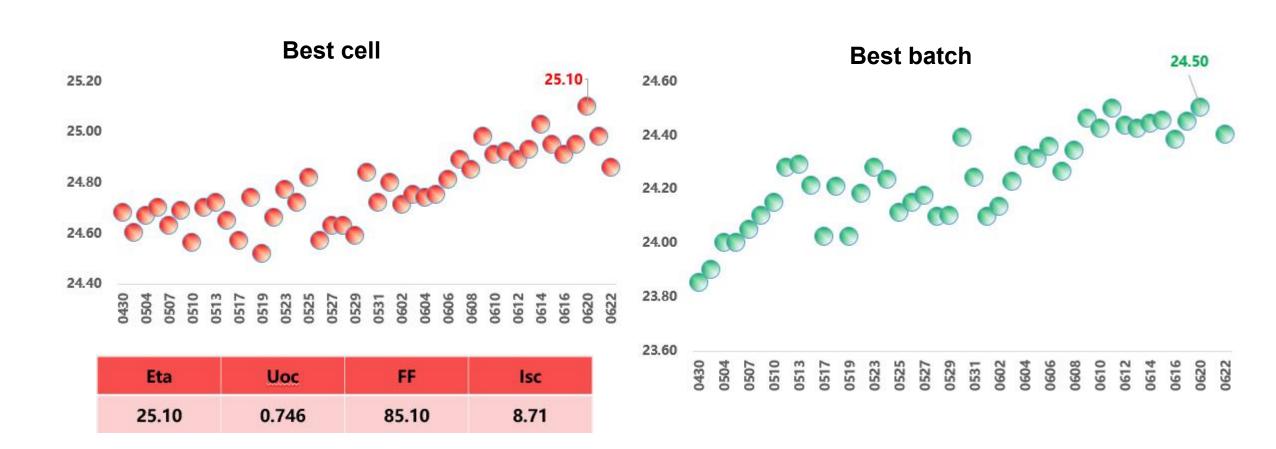
Pilot Line of HJT2.0 in Huasun





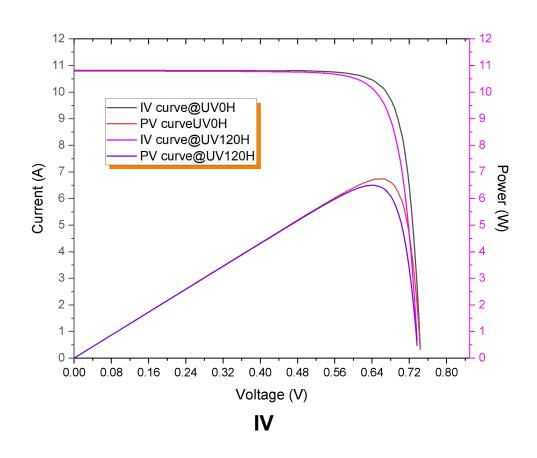
The average efficiency of best batch is 25.45%, that of the best cell arrived to 25.61%.

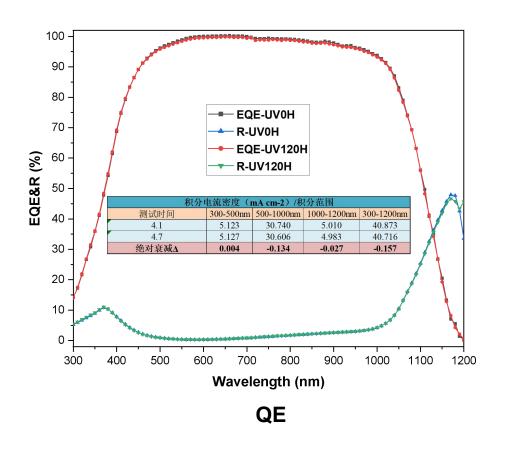
The module for HJT2.0 in pilot line



Mass production for HJT2.0-very beginning data

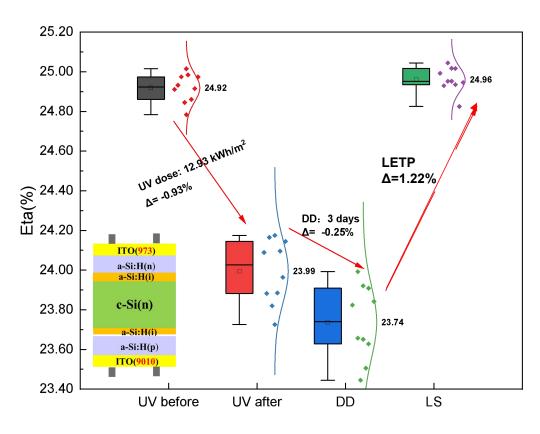
2GW mass production line for HJT2.0



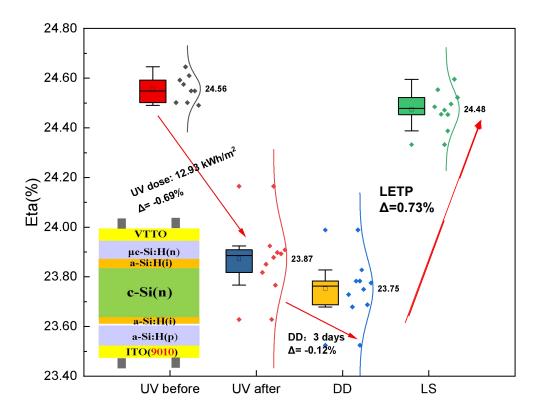


A challenge of HJT solar cell — UVID

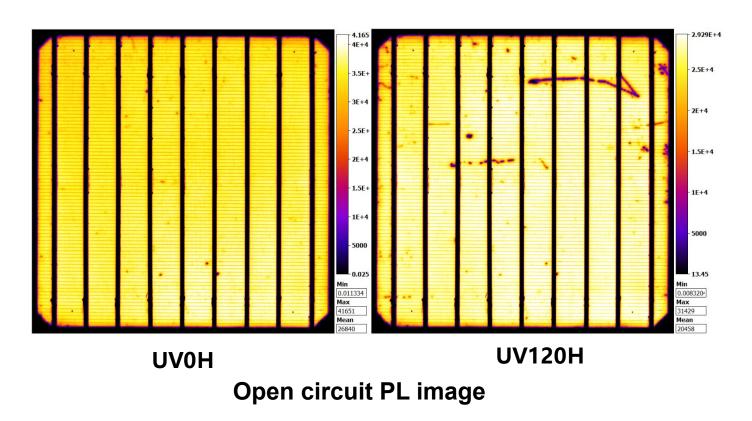
The character of UVID for HJT

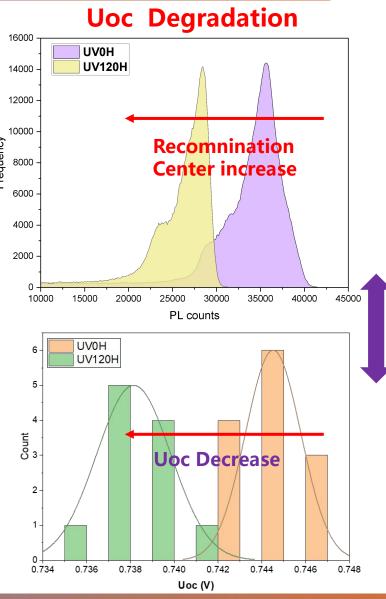


- UV exposion 120h, Eta decreased about 2.9%.
- FF and Voc decreased, But Isc not decreased so much. QE almost same.

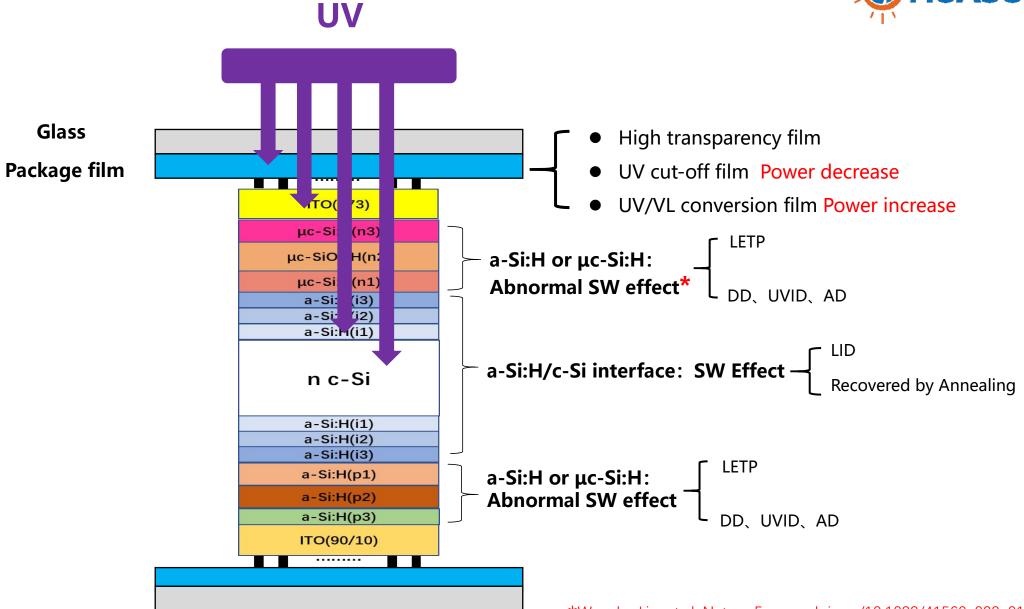

UV Induced degradation and recover

HJT 1.0 (a-Si:H)

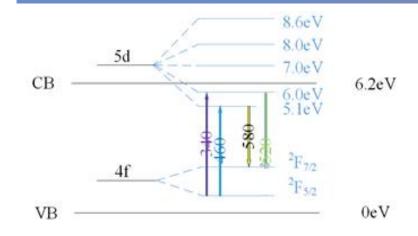

- UV cause efficiency decrease (UVID) .
- The LETP UVID

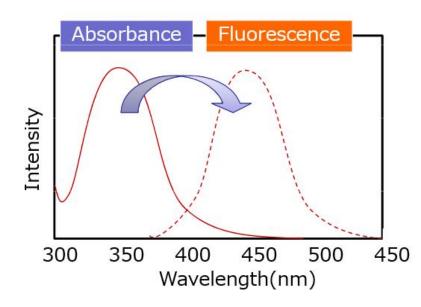

HJT 2.0 (μc-SiOx)

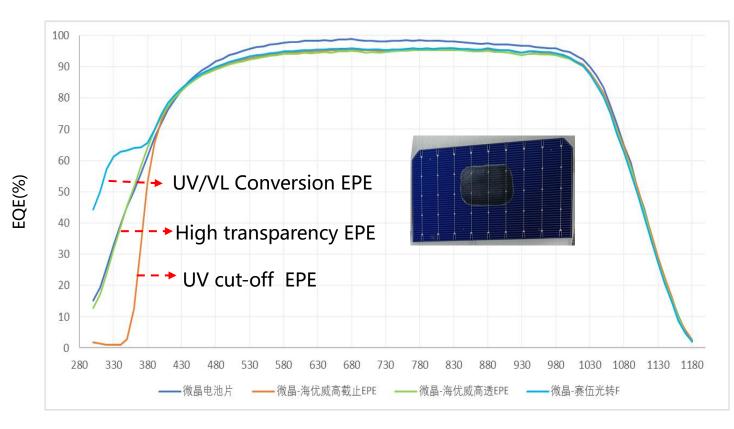
UV Induced degradation and recover



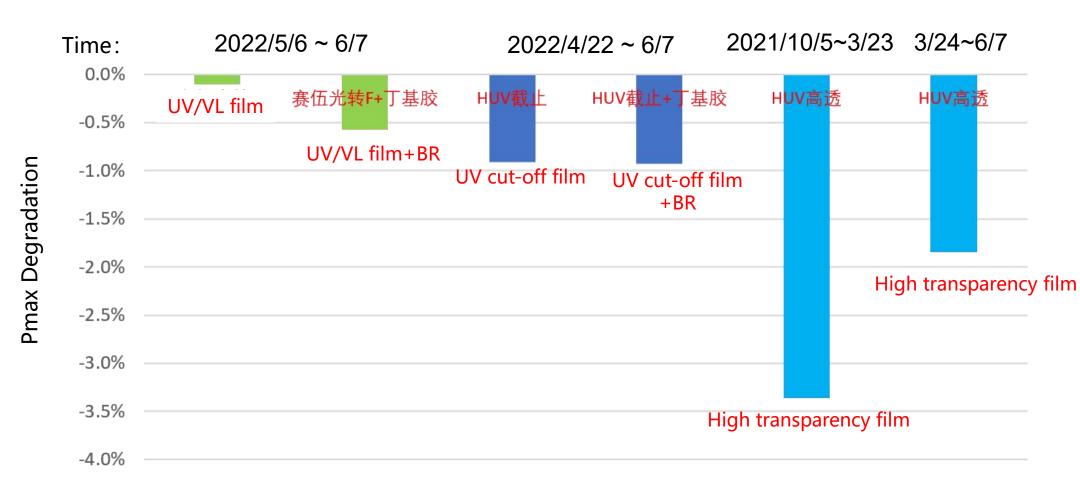
- After UV120H, PL become dark. There are more black dote. This mean there more recombination center.
- Uoc decrease.






Solution of UVID

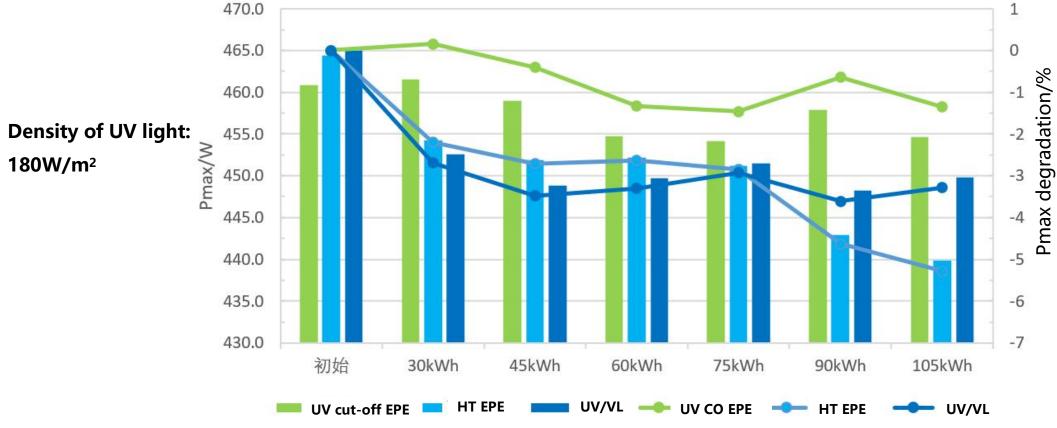
UV to Visible Light Conversion Encapsulation (UV/VL Film)



Condition: Wavelength: 300-1100nm; Frequency: 1000HZ; Step

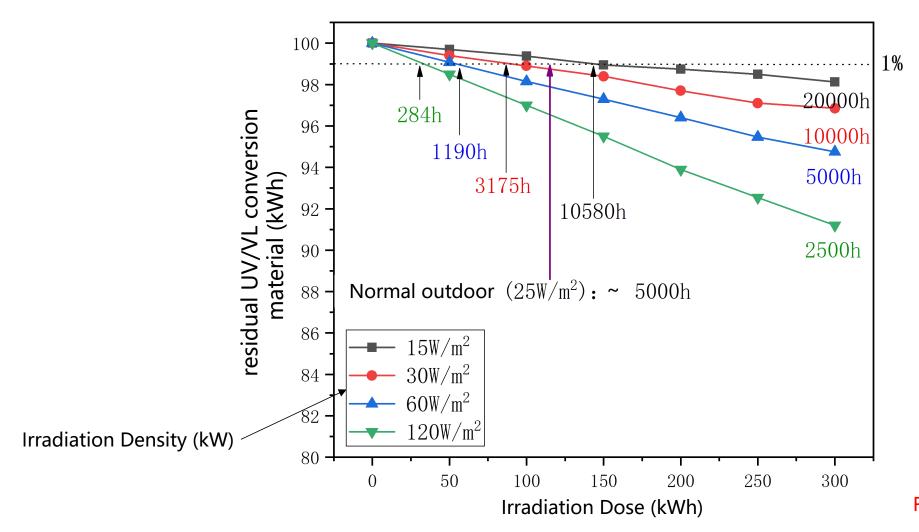
length: 10nm

Outdoor UV experiment for different package film



BR—Butyl Rubber

Indoor UV experiment for different package film


- UV cut-off film is quite stable.
- UV/VL Film decrease at beginning, and stable later.
- ☐ High transparent film keep decreasing.

UVID for different package film

Degradation of UV/VL conversion film for different UV intensity

From SYBRID Technical Report

Summary

a-Si:H HJT

ITO(973) a-Si:H(p2) a-Si:H(p2) a-Si:H(i3) a-Si:H(i2) a-Si:H(i1) n c-Si ITO(9010) ITO(973)

Up to 2021

Average eff. 24.3%

Yield: 98%

Eff.	24.3%		
СТМ	99%		
Power(M6@72)	475W		
Ag paste	23mg/W		
CTM=100% Equivalent Eff.	24%		

Average 25.3%

Best 25.26%

Eff.	25.3%	i a-Si:H
СТМ	98.14%	
Power(M6@72)	490W _{Buffe}	r i a-Si:H
Ag paste		i1 a-Si:H i2 a-Si:H
CTM=100% Equivalent Eff.	24.83%	

..... Seed TCO **Buffer TCO** N μc-SiOx:H Seed-layer:

A (PH₃ free) B (W/PH₃)

N c-Si

P nc-Si:H

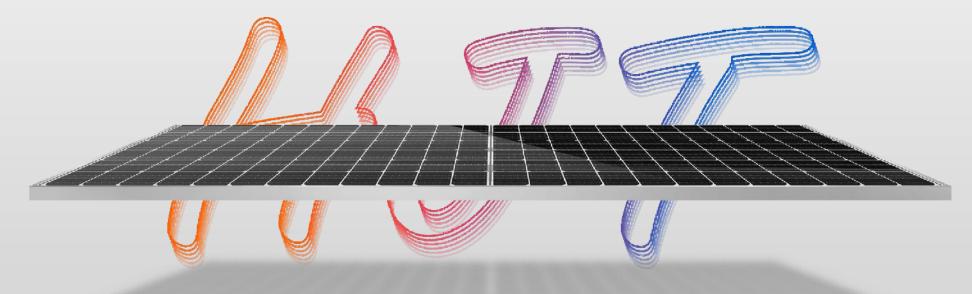
TCO

i a-Si:H -

μc-Si(O):H HJT

From 2022

Acknowledge:


Thank You

Build a ZERO Carbon World

HJT Portfolio and Supply in Europe

Anhui Huasun Energy Co., Ltd

© 2022 HUASUN ENERGY

CONTENT

Company profile

About Huasun

Business Scope

Super R&D Team

New PV Era

HJT knowledge

Merits of HJT

HJT Cell/Module

Innovations

HJT Roadmap

Himalaya Solar Module

G12 Series

M6 Series

Enpower the World

LCOE Scenario

Case Study

Headquarters

Xuancheng•Anhui

Sales Center

Nanjing•Jiangsu

Founded in

2020.07

Intelligent factories

176,000 m²

Headcounts

1,500

Core Tech/Product

HJT Solar Cell/Module HJT Specialized Wafer

Front runner in New Photovoltaic Era Pioneer of HJT mass production

Specializing in the development and application of ultra-high-efficient N-type silicon based heterojunction (HJT) solar cells and module technology, with leading industrial R&D and innovation ability, Huasun strives to provide customers with PV products in higher performance and better quality.

Huasun Team

Huasun actively responds to climate change solutions, gathers the most experienced talents in HJT field , and forms a super R&D team led by authorities in the industry, to explore effective approaches to improve solar cell efficiency, and challenge the low-cost but productive mass production of HJT cells and modules.

15Y+

100+

Team members' average experience in solar tech development and management in leading companies

Talents in HJT field

1 Chief Scientist

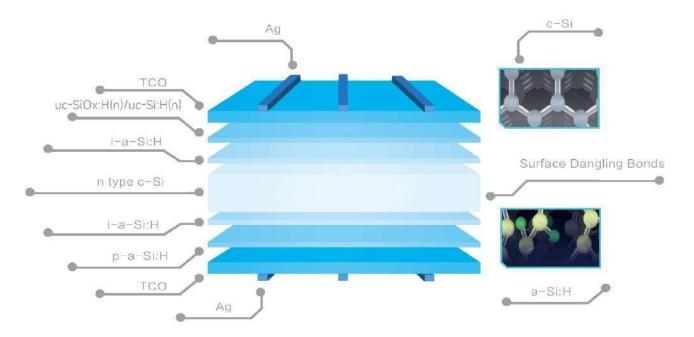
Of National High-tech R&D program as well as National Key Basic research Project

2 Leading Talents in HJT Field

4 Ph.D

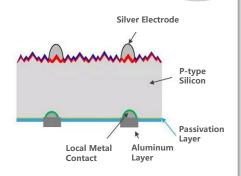
33 Masters

HJT Technology


New Generation Mainstream platform Cell Tech

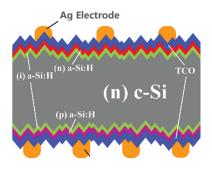
HJT cells combine the advantages of crystalline silicon and thin film technologies, with excellent light absorption and passivation effects, and are superior to PERC in efficiency and performance. It is one of the solar cell technologies that increase conversion efficiency and power output to the highest level and also represents the development direction of the new generation of cell platform technology.

The natural bifacial symmetrical structure of HJT cells can effectively improve the power generation capacity on module's backside. The extremely low temperature coefficient enables modules to maintain stable power generation performance in high temperature environments. Excellent low-light performance increases modules' power generation period and further improves power output.



Massive Production effi. Advantage

PERC


A mature cell technology, has already reached its efficiency limit of 24.5% Efficiency Range 22.5~23.5%

Close to its efficiency limits and has no clear direction to improve

Efficiency begins from

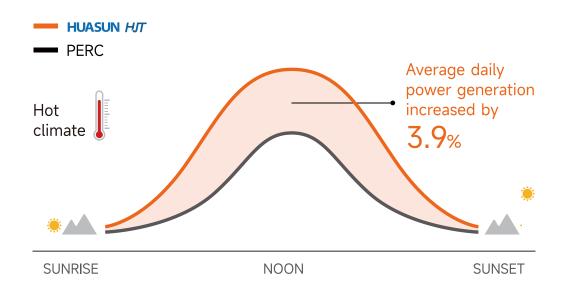
24%

Explicit path to improve cell efficiency with huge potential.

The initial efficiency at start of massive industrialization has exceeded PERC, and is going to reach 25.5~26% during 2022-2023.

^{*} Huasun average efficiency in mass production is 24.75% at present; Maximum efficiency of single production batch is 24.9%; Maximum efficiency of single piece is 25.3%

Superior Temp. Co-efficient

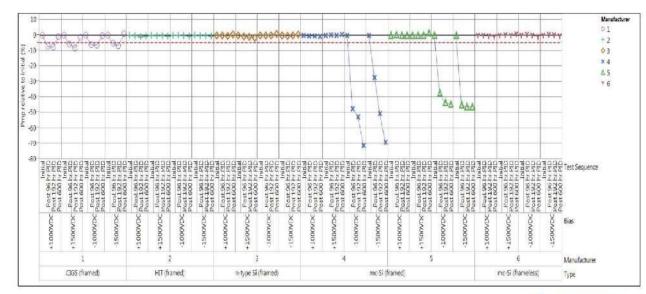


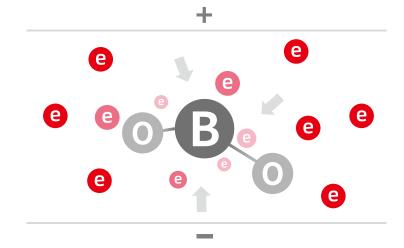
Industry Leading

-0.26%/°C

Temp. Co-efficient

-0.26%/°C Temperature coefficient means HJT solar panels generate about 3.9% MORE electricity than PERC panels in a hot climate.


Product	Temp Coefficient %/°C	Maximum power 500W, the efficiency loss under 65°C	Efficiency loss in a hot climate
Mono	-0.45	90W	18.0%
Mono PERC	-0.38	76W	15.2%
НЈТ	-0.26	52W	10.4%

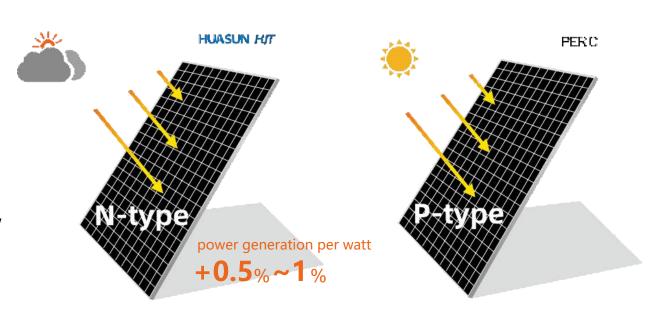

Extremely Low Attenuation

PID LID

N-type wafer does not have B-O bond, resulting in no LID effect, which fundamentally guarantee the products' durability and yield. TCO film on HJT cell is conductive, so the charge will not polarize on the surface, which can prevent the potential-induced attenuation, avoiding PID from the structure. Huasun HJT modules adopt EPE as encapsulation, which has stronger waterproof performance. With double-glass design, material inside modules will not be corroded, so PID attenuation can be prevented.

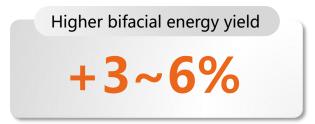
Normal solar cells have B-O band which leads to LID

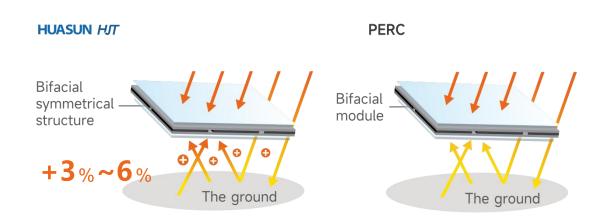
来源: CFV solar test lab

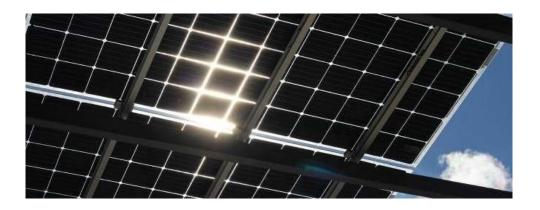

Great Weak-light Performance

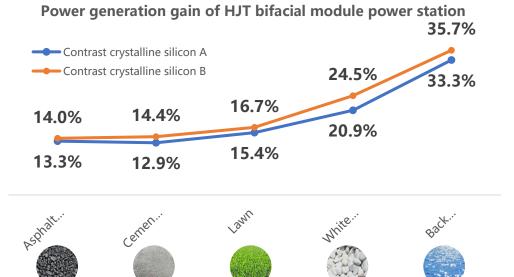
Energy yield in weak light environment

+0.5~1%


Compared with the P-type monocrystalline silicon wafer, the N-type wafer has a better low-light effect, which contributes about 0.5%~1% energy yield to the power generation per watt.




Bifaciality Benefits



HJT's natural bifacial symmetrycal structure makes the bifacility up to 95%. The power generation per watt of HJT cells is about 3%~6% higher than that of bifacial PERC cells. In practical applications, the output gain of Huasun HJT bifacial modules can reach more than 30%.

^{*} According to Huasun data: the output gain of Huasun HJT bifacial modules can reach more than 30%

Processing Advantages

HJT Production Process

Fewer manufacturing process compare with other solar cell technologies

Ultra-low Carbon Footprint

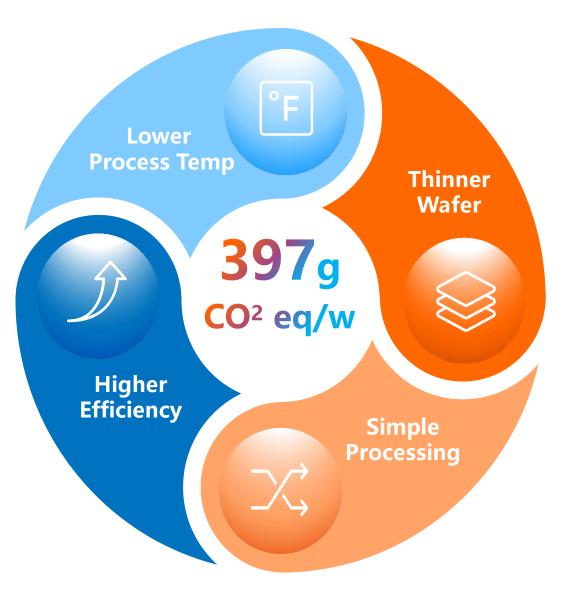
Till the end of 2022, Huasun can get an estimated CO² carbon footprint of HJT module manufacturing as low as 397g/W, by applying and improving various methods to reduce the carbon emission during HJT solar cell processing.

Higher efficiency

Higher efficiency leads to a much lower CFT per watt.

Thinner wafer

Being able to adopt Thinner wafer helps to reduce wafer CFT per piece.


Lower process temp.

Low temp. processing consume less energy.

Simpler processing

Simpler cell processing takes less energy consumption from manufacturing

Materials for Module

Non-destructive Cutting Technology

Non-destructive smooth cutting surface, no heat affected area, little impact on cell efficiency

High Quality Result From Advanced Materials

Lower Temperature Coefficient

Compared to PERC, HJT has lower temperature coefficient, to raise power output. HJT's advantages are more obvious in high temperature, high irradiation area

High barrier from water vapor, anti-PID, high cross-linking degree, high light transmittance

in.

Higher Bifacial Energy Yield HJT cell's bifaciality can reach 95%, which would bring more energy yield.

The edge of the module is sealed with PIB based sealant to improve water resistance.

High Reliability

High Power Generation

[X]

LID&PID

Better Weaklight Performance

The minority carrier lifetime of Ntype cell is high, resulting in a better power generation ability in weak light condition than PERC.

Front/back mechanical loading up to 5400/2400Pa

Huasun cooperated with first-class material suppliers around the world, providing products that exceeded industry quality standards.

NO LID, NO PID in cell

N-type wafer has no B-O bond, and TCO conducts electricity on HJT cell surface without insulating layers, so LID and PID can be eliminated in principle.

Lower Lifetime Degradation Rate

1% attenuation in the 1st year, the annual attenuation from the 2nd year is 0.375%, and the power is not less than 88% until the 30th year.

A whole set of racking solutions can be designed

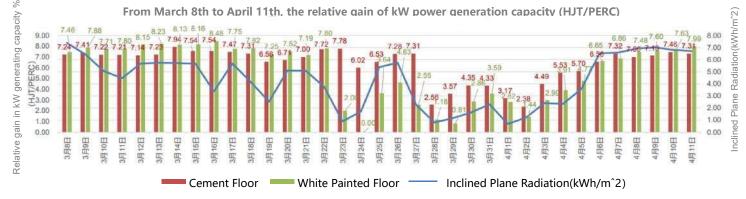
Real Installation Contrast

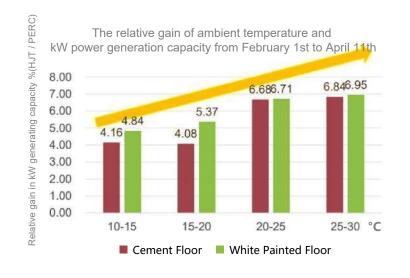
Third party demonstration base:

 CTC state inspection group Hainan outdoor demonstration base (Ding'an, Hainan)

Module project:

- Huasun HJT Bifacial double-glass module 460W 166mm 144cell
- Other PERC Bifacial double-glass module 445W 156mm 156cell


Empirical scheme:


 Modules are connected in series to HUAWEI inverter, to monitor the power data HJT modules and PERC modules on white ground and cement pavement

More power generation:

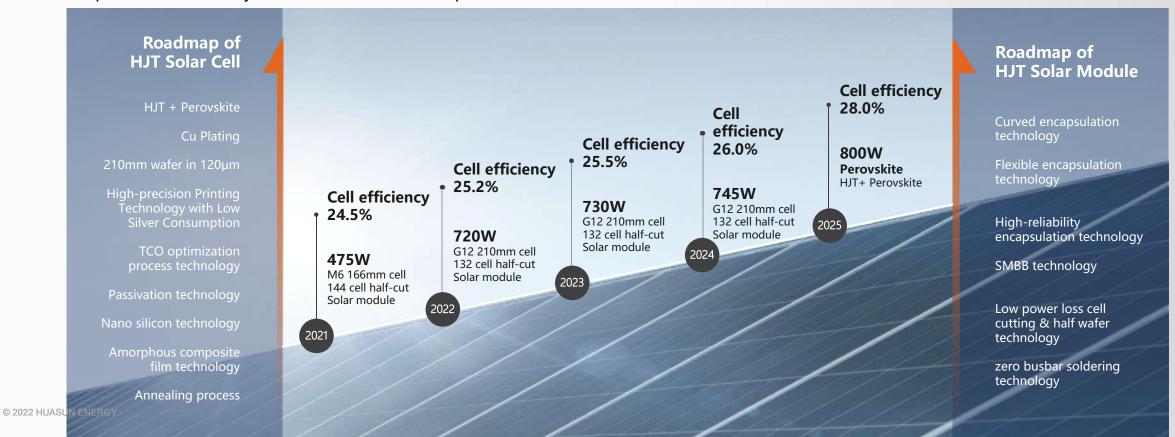
Same installation capacity HJT module VS PERC Bifacial double-glass module: average power gain

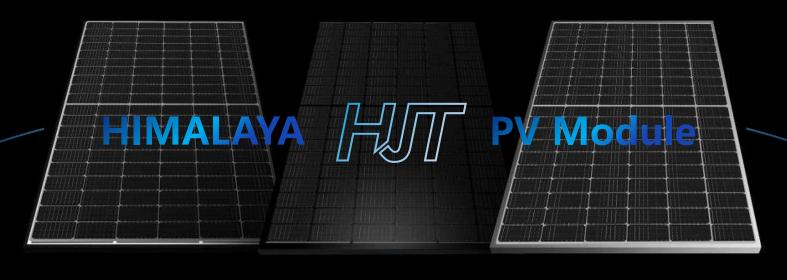
+6.44% (White Ground) +6.51% (Cement Pavement)

Stronger power generation:

 Higher Temperature, more obvious advantages of HJT. HJT increase

power generation +4~7%
per watt than PERC Bifacial double-glass
module


Technology leads the future


Taking HJT as the core, Huasun would like to enhance clients' confidence of solar energy's future via higher product efficiency, more stable power generation performance, better quality assurance and platform-based technology expansion capabilities.

Huasun simultaneously laid out the R&D of single-microcrystalline, double-microcrystalline, HBC, copper electroplating and heterojunction-perovskite tandem cells, which continuously improves the efficiency of solar cells and reduces product costs.

800w+

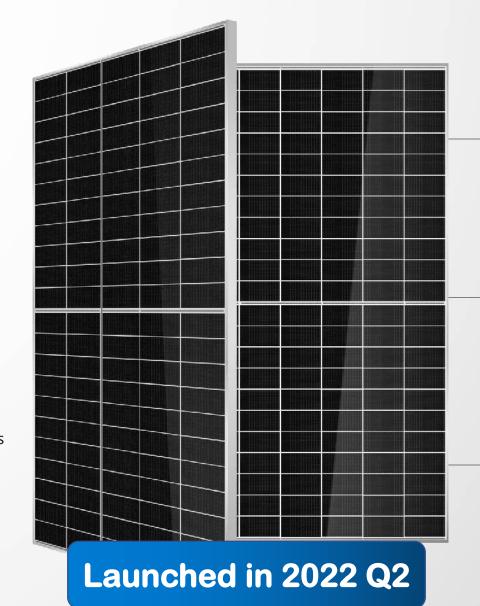
HJT+Perovskite+210mm wafer to realize module power up to 800W+

Himalaya Series HJT Solar Module

JP-AC

Himalaya G12 Series

Bifacial double-glass HJT module


710w

22.9%

Maximum Power Output

Maximum Module Efficiency

- N-type 210mm solar cell
- SMBB multi-busbar technology
- Pre-cut half cell technology
- >85% bifaciality
- 15-year product warranty, 30-year performance warranty
- Suitable for commercial and utility projects

Up to

710W

Maximum module efficiency up to 22.9% 2384*1303*35mm 38.7KG

Up to

120 Cells 635W

Maximum module efficiency up to 22.4% 2172*1303*35mm 35.3KG

Up to

580W

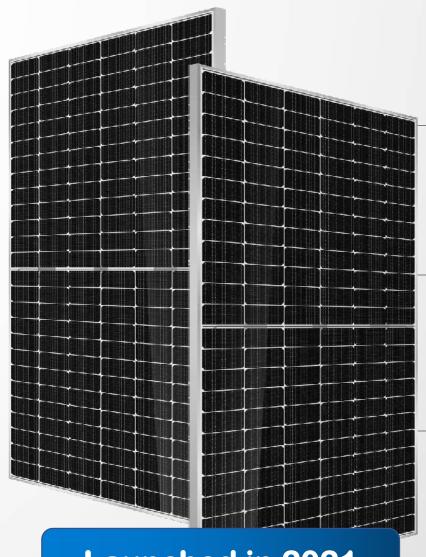
Cells

Maximum module efficiency up to 22.2% 2384*1096*35mm 32.3KG

Himalaya M6 Series

Bifacial double-glass HJT module

500w


Leading power Output

23%

Maximum Module Efficiency

- N-type 166mm solar cell
- SMBB multi-busbar technology
- Pre-cut half wafer technology
- >85% bifaciality
- 15-year product warranty, 30-year performance warranty
- Suitable for rooftop, commercial and utility projects

Launched in 2021

Up to

520W

Maximum module efficiency up to 22.1% 2263*1038*30mm 29.5 KG

Up to

500W

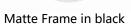
Maximum module efficiency up to 23% 2094* 1038*30mm 27.5 KG

Up to

400W

120 Cells

Maximum module efficiency up to 22.0% 1755* 1038*30mm 23.5KG

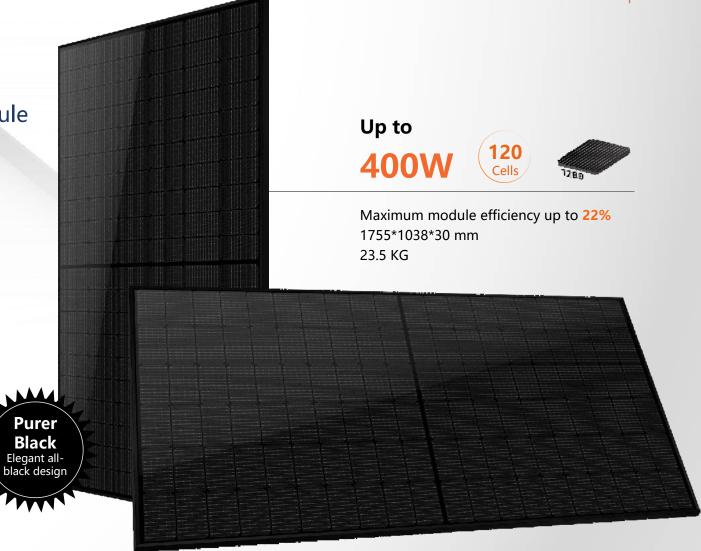


Himalaya M6 Series

Full Black Bifacial double-glass HJT module

- Aesthetic design in all black
- Class A fire rating, safety guarantee
- Ideal choice for rooftop system

Glass with black grid line


HJT solar cell

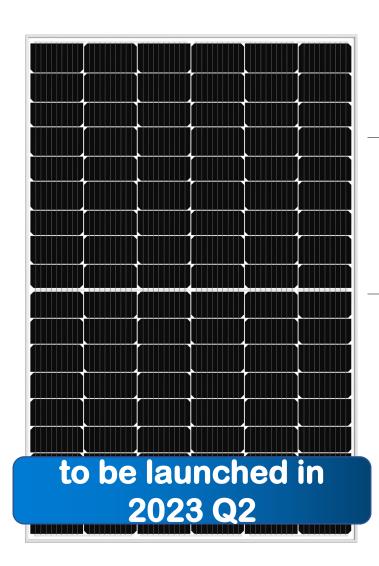
Aesthetic design

Himalaya M10 Series

Bifacial double-glass HJT module

445w

Leading power
Output


22.8%

Maximum Module Efficiency

- N-type 182mm solar cell
- SMBB multi-busbar technology
- Pre-cut half wafer technology
- >85% bifaciality
- 15-year product warranty, 30-year performance warranty
- Best rooftop solar module

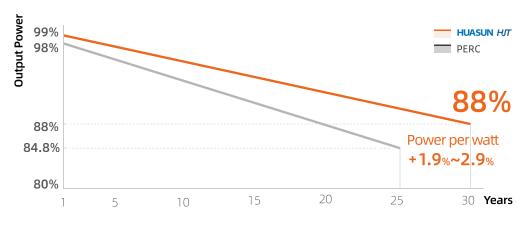
30 Years

Up to **445W**

Maximum module efficiency up to 22.8% 1722* 11134*30mm 22 KG (Ultra light with 1.6mm glass)

Up to

590W



Maximum module efficiency up to 22.8% 2278* 1134*30mm 32KG

Excellent Module Eminent Warranty

Huasun's HJT solar modules all have 15-year product warranty and industrial leading 30-year linear performance warranty. Huasun has absolute confidence in our module manufacturing. Compared to traditional modules, HJT modules have more power output and higher reliability, and can save more cost. Huasun's HJT products all passed the industry's professional third-party tests to ensure the best quality and yield quarantee.

Factory system certification

Huasun ensures that all aspects in manufacturing are in the leading position in the industry via continuous efforts. The company has passed the latest ISO system certification, and will continue to actively improve various system in the future to provide sufficient guarantee for customers.

Product certification

Huasun HJT modules have passed the most stringent tests in the industry and obtained a range of certifications about product quality and safety. At present, Huasun HJT products have gained the following certifications.

ΤÜV

CQC(IEC 61215-1:2016, 61730-1:2016)

Green Building Material Certification of HIT Module Technology from CTC

JP-AC

Product Safety Certification

HIMALAYA • G12 SERIES

Application Hainan China

Located in Anding, Hainan (19.30°N), Grass ground, install capacity 100MW; Fixed Mounting structure by 15° install, 1m distance to ground from the lower side, string inverter, 1500V.

-17.26%

-6.84%

-4.14%

Non-module BOS

©
P
LCOECost

-6.6%

Module(glass-glass)		PERC Bifacial, 182,72C (144)	TOPCON Bifacial, 182,72C (144)	PERC Bifacial 210,66C 132)	HJT Bifacial 210,66C (132)	
Power (W))		540	560 650		700	
No. of Module / String		28	28 32		28	
String Power (W)		15120	15680	20800	19600	
BOS	Mounting System	baseline	-2.15%	-1.29%	-9.4%	
	Foundation	baseline	-3.63%	-5.44%	-15.1%	
	Cable	baseline	-3.33%	-8.71%	-13.1%	
	Labor	baseline	-3.96%	-9.96%	-17.26%	
	Land	baseline	-2.55%	0.22%	-6.84%	
	BOS	baseline	-0.64%	-1.66%	-4.14%	
LCOE		baseline	-4.42%	-0.73%	-6.60%	

Case Study

Bulgaria 350MW

Utility Project

The biggest HJT module utility project in the world at present

Location: PAZARDZHIK, Bulgaria

Capacity: **350MW**

Annual power generation:

650,000,000Kwh

Annual coal saving:

260,000 tons

Annual CO₂ emission reduction:

648,000 tons

Shandong Shouguang 14MW

Coastal Power Station

Location: Shouguang,

Shandong province, China

Capacity: 14MW

Annual power generation:

17,690,000Kwh

Annual coal saving:

7,076tons

Annual CO₂ emission reduction:

17,600tons

Case Study

Anhui
Xuancheng
4MW
Commercial Rooftop

Location: Xuancheng,

Anhui province, China

Capacity: 4MW

Annual power generation:

4,260,000Kwh

Annual coal saving:

1,706tons

Annual CO₂ emission reduction:

4,251tons

Germany

5KW

Rooftop Project

Location: **Euskirchen, Germany**

Capacity: **5KW**

Annual power generation:

5,492Kwh

Annual coal saving: 2200kg

Annual CO₂ emission reduction:

5500kg



EU market Development

17 European Countries with HuaSun HJT installed

- Bulgaria: Inercom for 600MW+ project cooperation
- Swiss: Partnership and distribution with 3S Swiss Solar
- German: PVSelect & 2 major partners
- France: With 1 major partner
- Spain: Sales office in Madrid, over GW pipeline
- Benelux: distribution with CKW, over 100MW project in bidding
- Hungary: Partnership with Ecosolifer

Portugal, Greece, Scandinavia Project in development Partner with iNet Tech develop over GW in pipeline

Build a ZERO Carbon World

Intelligently produce clean energy
Together share the warm sunshine

We enpower the world with solar energy,
to restore a green earth!
In such a tremendous energy project, we keep looking
for new ways to improve the efficiency and
performance of solar energy, to make life better.

Relying on the strong capability of technology innovation and development, Huasun has realized the large-scale production and application of HJT products, to provide higher yield return and added value to partners around the globe.

To lead the new photovoltaic era!

HEADQUARTERS

No.99 Qingliu Road, Xuancheng Economic Development Zone, Xuancheng, Anhui, China \$\\cdot\ +86-563-2626509\$

SALES CENTER

No.411-C3 Greenland Building, Yuhuatai District, Nanjing City, Jiangsu, China.

\$\\$\\$ +86-25-86216170

From PV pioneers to global leader

1st EPC company

Worldwide with an installed capacity of > 1 GW

2 decades one of TOP 10 –EPC worldwide

< 10 years from a start-up to a global player > **480** realized PV Power plants

"Early Mover" in developing new markets

> **4.2 GW** installed capacity

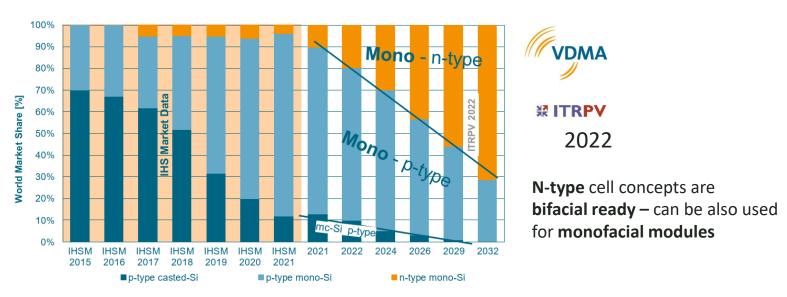
Pioneersin developing utility scale PV

Allround expertise inhouse **Elevion** GERMANY **RESEARCH & PROJECT EPC 0&M DEVELOPMENT*** Cyber Innovation System DC & AC Technical Construction Scouting Permitting Design: Security screening Engineering Asset LCOE & NPV Management SCADA & Procurement modeling Preventive & Monitoring Quality Construction Big Data predictive driven O&M guidelines maintenance permit Grid connection

Agenda

) 1

Solar **Cell Types Market** Overview

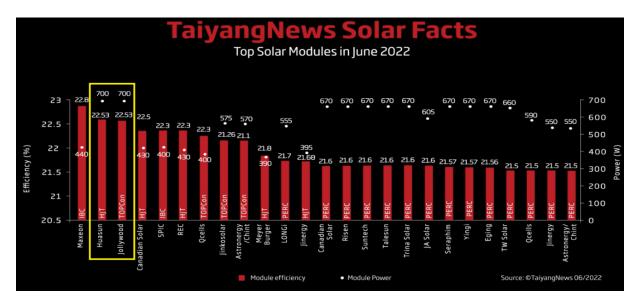

2

Price Competitiveness
Threshold of HJT PV
Modules

3

Driving factors of **HJT**PV modules **profit** in **large scale PV plants**

Cell Type Market share



- N-type to dominate the market share by 2030, currently is approx. 20%
- Main cell concepts are: TOPCon, HJT and IBC
- → Which n-type cell concept will dominate by 2030?

13th Edition ITRPV 2022 International Technology Roadmap for Photovoltaic

N-Type Power & Efficiency Race

- PERC has been reaching the PV module industrial efficiency limit
- Both technologies 'Topcon' and 'HJT' can have the same PV module efficiency which could indicate
 already a super-hot-race in PV module efficiencies between those technologies in the coming years.
- Volume and price gap will be decisive for the market share leading

https://taiyangnews.info/

Agenda

Solar Cell Types **Market** Overview

Price Competitiveness Threshold of HJT PV **Modules**

Driving factors of HJT PV modules **profit** in large scale PV plants

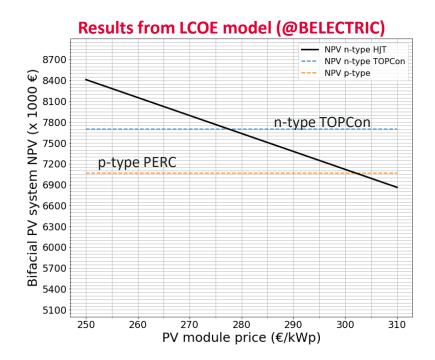
Bifacial PV Power Plant in Denmark

Project Details Project size (MWp) 24-25 Plot size (ha) 18.15 Grid Power limit No

- The system configuration compared for this project:
 FIX South, 4P, 15°, bifacial, 3m row spacing, DC/AC ratio 1.2
- **3 Bifacial PV modules** were compared in terms of **NPV*** for this project:
 - P-type PERC bifacial PV modules (540 Wp) M10
 - N-Type TOPCon bifacial PV modules (560 Wp) M10
 - N-type HJT bifacial PV modules (680 WP) M12
- LID assumptions:
 - P-type: 1.5%N-Type: 0.6%
- Albedo assumption:
 - 20%

Solar irradiance data: Solargis 2022

www.istockphoto.com NPV: Net Present Value (€)


Price Competitiveness Threshold of Huasun HJT

• Case assumptions:

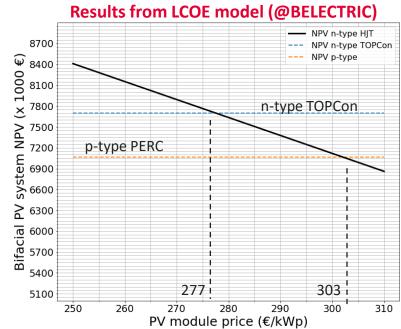
 PPA: 7¢/kWh and 4.8 ¢/kWh, discount factor:3%,5%

PV module prices 06/2022:

- P-type PERC 540Wp: 254 euro/kWp
- N-type TOPCon 560Wp: 265 euro/kWp
- N-type HJT 680Wp: ?

Price Competitiveness Threshold of Huasun HJT

• Case assumptions:


• PPA: 7¢/kWh and 4.8 ¢/kWh, discount factor:3%,5%

PV module prices 06/2022:

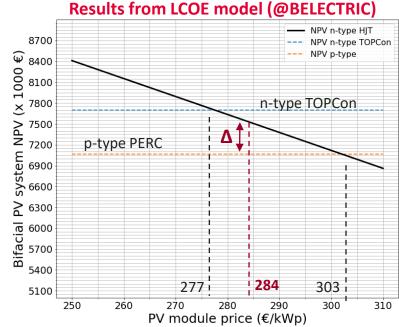
- P-type PERC 540Wp: 254 euro/kWp
- N-type TOPCon 560Wp: 265 euro/kWp
- N-type HJT 680Wp: ?

Conclusions:

- The price gap between n-type HJT and P-type PERC must be lower than 49 euro/kWp to be considered for the bifacial bifacial PV projects in Denmark
- Or the price gap between n-type HJT and ntype TOPCon must be lower than 12 euro/kWp to be considered for the bifacial PV projects in Denmark

Price Competitiveness Threshold of Huasun HJT

• Case assumptions:


• PPA: 7¢/kWh and 4.8 ¢/kWh, discount factor:3%,5%

PV module prices 06/2022:

- P-type PERC 540Wp: 254 euro/kWp
- N-type TOPCon 560Wp: 265 euro/kWp
- N-type HJT 680Wp: ?

Conclusions:

- The price gap between n-type HJT and P-type PERC must be lower than 49 euro/kWp to be considered for the bifacial bifacial PV projects in Denmark
- Or the price gap between n-type HJT and n-type TOPCon must be lower than 12 euro/kWp to be considered for the bifacial PV projects in Denmark
- Current N-type HJT 680Wp price: 284 euro/kWp

Agenda

1

Solar **Cell Types Market** Overview

2

Price Competitiveness
Threshold of HJT PV
Modules

3

Driving factors of **HJT**PV modules **profit** in large scale PV plants

System Design Optimization: Case Study

Top System Designs with A	rea Limit (ha)	181,500				NP	NPV Ranking	
Substructure	Module	Inverter System	Row Distance (m)	DC/AC ratio	CapEx deviation (€)	discounted OpEx deviation (€)	discounted sale of electricity deviation (€)	NPV deviation (€)
FIX South, 4P, 15°, HoG 0.7m, bifacial	HS-210-B132DS675	SG250HX_bifi	3,0	1,25				
FIX South, 4P, 15°, HoG 0.7m, bifacial	LR5-72 HBD 540 M Bifacial	SG250HX_bifi	3,0	1,3	-1.197.285 €	-144.145€	-1.818.163€	<u>-476.733</u> €

- LR5-72 HBD 540 M Bifacial → P-type PERC
- HS-210-B132DS675 → N-type HJT

Key takeaways:

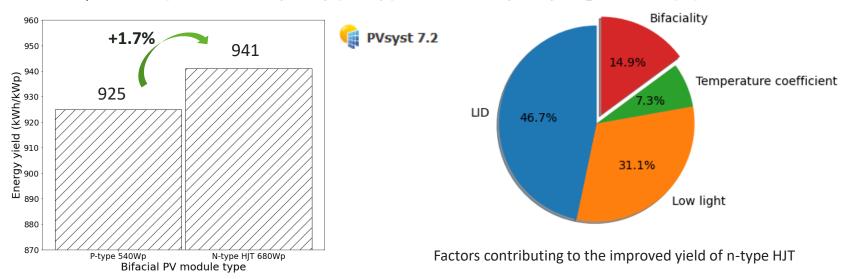
- P-type PERC offer much lower CAPEX and OPEX than n-type HJT, however it has much less sales of electricity than n-type HJT.
- > HJT can increase the NPV of the project by more than €475,000 over 30 years.
- HJT is more profitable for the project than p-type PERC.

Net present value (€)

Sales of electricity (€)

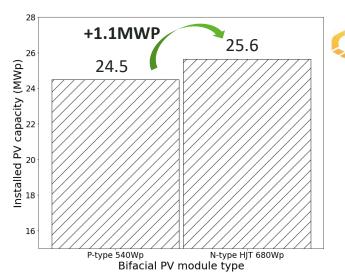
Discounted

Sales of electricity (€)


Discounted

Sales of electricity (€)

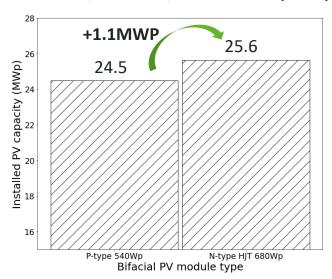
- > Yield (kWh/kW),
- ➤ Installed capacity (MWp)
- > PV module yearly degradation (%)

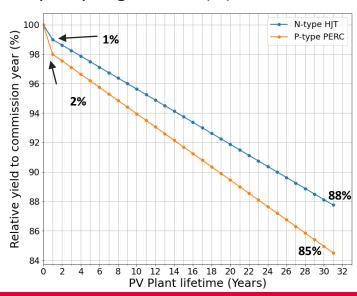

➤ Yield (kWh/kW), installed capacity (MWp), PV module yearly degradation (%)

Key takeaways:

- Better low light behavior and LID have improved the HJT n-type yield the most in comparison to P-type PERC.
- For this project site, temperature coefficient advantage of HJT has the smallest contribution to yield improvement.

> Yield (kWh/kW), installed capacity (MWp), PV module yearly degradation (%)




PV Power plant layout

Key takeaways:

> HJT can achieve 1.1MWp more installed than p-type PERC thanks to the higher PV module efficiency (21.9% vs. 21.1%).

> Yield (kWh/kW), installed capacity (MWp), PV module yearly degradation (%)

Key takeaways:

- > HJT can achieve 1.1MWp more installed than p-type PERC thanks to the higher PV module efficiency (21.89% vs. 21.11%).
- > HJT can generate more yield over the lifetime of the PV project than P-type PERCs, the yield advantage is 3% absolute more

Conclusion

- N-type HJT PV modules are already competitive to P-type PERC for large scale PV projects
- N-type HJT PV modules come with higher CAPEX and OPEX, but potentially increase the profit (NPV) of PV power plants by several 100 k€
- Several factors makes n-type HJT ahead of p-type PERC for high profit: yield, installed capacity, degradation, price gap to p-type PERC
- To ensure the profitability of HJT PV modules, their reliability is equally important to be investigated and evaluated

this **Webinar** is powered by Huasun

11 August 2022

10:00 am – 11:00 am | CEST, Berlin 9:00 am – 10:00 am | BST, London 11:00 am – 12:00 pm | EEST, Athens

Mark Hutchins
Editor
pv magazine

pv magazine Webinars

High performance at scale with HJT Q&A

Wang Wenjing
CTO
Huasun

Matthew Jin
GM of sales center
Huasun

Dr. Djarber Berrian

PV Innovation and Design Engineer

Belectric

The latest news | print & online

Australian solar park could generate hydrogen for less than \$2/kg

by David Carroll

World's largest underground hydrogen storage project

by Emiliano Bellini

Mostread online!

Coming up next...

Tuesday, 30 August 2022

2:00 pm – 3:00 pm CEST, Berlin 8:00 am – 9:00 am EDT, New York City Thursday, 8 September 2022

11:00 am – 12:00 pm CEST, Berlin 10:00 am – 11:00 am, Morocco Many more to come!

Demonstrating durability in n-type modules

What ultrapowerful string inverters mean for utility-scale and EPCs In the next weeks, we will continuously add further webinars with innovative partners and the latest topics.

Check out our pv magazine Webinar program at:

www.pv-magazine.com/webinars

Registration, downloads & recordings are also be found there.

this **Webinar** is powered by Huasun

Mark Hutchins
Editor
pv magazine

Thank you for joining today!