LONGI LIFECYCLE QUALITY

Lifecycle Quality Program:

Ensuring Long-term Module Performance and Reliability

Alyssa Huang, LONGi Product Marketing Manager PV Magazine Roundtables 2023

About LONGi

2000

Foundation

60000+

LONGi is committed to being the world's leading solar technology company.

Ы

85GW+

141.7GW

Top 1 Global Module Shipment 2022

Top 1 Global Wafer Shipment 2022

Impact of Module Reliability on ROI

Ensuring lifetime module reliability is essential to guaranteeing the long-term operation of PV plants and ROI.

LONGI

LONGi's Reliable Design Concept: Upgrading Module Reliability in a Scientific Method

LONGi conducts in-depth studies on failure mechanisms and works to develop a variety of testing methods. These methods simulate a comprehensive set of real-world application scenarios to ensure module long-term reliability.

LONGI

Local Glass Thermal Shock Resistance Test to Reduce Hot Spot-Induced Glass Failure

LONG

Pioneered full-size photovoltaic glass local thermal shock resistance test standards with 200°C (392°F) test temperature.

The new standard more effectively filtered out unqualified suppliers

Supplier	Conventional standard (300*300)	Thermal Shock Test Temperature °C	Hot Spot Temperature °C	Supplier	Conventional standard (300*300)	Thermal Shock Test Temperature °C	Hot Spot Temperature °C
Supplier A	OK	96.2	187.7 (NG)	Supplier E	OK	187	188.8 (OK)
	OK	127.7	193.3 (NG)		OK	> 200	192.6 (OK)
	OK	138.4	184.5 (NG)		OK	193.3	188.4 (OK)
	OK	135.9	179.1 (NG)		OK	> 200	192.1 (OK)
	OK	172.5	185.6 (NG)		OK	191.06	185 (OK)
Supplier B	OK	> 200	194.1 (OK)	Supplier F	OK	> 200	174.9℃ (OK)
	OK	> 200	188.7 (OK)		OK	> 200	183.4℃ (OK)
	OK	> 200	190.9 (OK)		OK	> 200	195.5℃ (OK)
	OK	> 200	191.4 (OK)		OK	194.6	185.8°C (OK)
	OK	> 200	197.1 (OK)		OK	> 200	181.6℃ (OK)
Supplier C	OK	> 200	191.7℃ (OK)	Supplier G	OK	> 200	192 (OK)
	OK	195	191.4°C (OK)		OK	> 200	193.5 (OK)
	OK	137.65	183.6°C (NG)		ОК	> 200	198.8 (OK)
	OK	191.06	191.4°C (NG)		ОК	> 200	192.9 (OK)
	OK	/	176.3℃ (OK)		OK	> 200	201.3 (OK)
Supplier D	OK	> 200	184.7°C (OK)	Supplier H	OK	> 200	180.4 (OK)
	OK	> 200	179.3℃ (OK)		OK	> 200	186.9 (OK)
	OK	> 200	185.8°C (OK)		OK	> 200	195.8 (OK)
	OK	> 200	191.7℃ (OK)		OK	> 200	193 (OK)
	OK	196	190.5°C (OK)		OK	> 200	195.5 (OK)

Increase test temperature = reduce glass failure rate

LONGi Solar @ 2023

Δ

Four-Point Cell Bending Test Standard to Minimize Cell Crack and Mechanical Load Failure

NEED: Standardized Quality Cell Testing

- Effectively select high-quality cells at early stage
- Accurately predict module's mechanical load performance
- Minimizing cell crack and ML failure

CHALLENGE: Inconsistent Results of Cell Bending Tests

- Lack of standardization
- Test approach varies by supplier
- Difficult to compare results and raises concerns about accuracy

SOLUTION: LONGi Lifecycle Quality Program

- Lead the formulation of 4-point cell bending testing standard
- Accurately and efficiently screen high-quality cells
- Predict the module's ML performance at an early stage

LONG

Four-Point Cell Bending Test Standard to Minimize Cell Crack and Mechanical Load Failure

Figure 1. Solar cell is characterized as brittle material.

Figure 2. Load vs. deflection of various materials. Configuration D represents solar cell.

No.	Main Test Verification	Description
1	3-point/ 4-point test procedure selection	Evaluate the effectiveness of the test method
2	Indenter spacing determination	Conduct verification tests to determine the feasibility of parameters with various cell sizes
3	Indenter diameter selection	Small effect on the accuracy of the test
4	Indenter set up selection	Fixed set up
5	Loading speed determination	Small effect on the accuracy of the test

LONG

High Temperature Reverse Bias Standard to Reduce Bypass Diode Failure

LONGI

LONGi's Testing Standard to Ensure Long-Term Field Performance

PV Glass Innovation, Pioneering

Local thermal shock resistance test \rightarrow Reduce hot spot-induced glass failure

Four-point bending strength test

 \rightarrow Reduce external load-induced failures

Standardized management of coatings

 \rightarrow Reduce degradation per coating defects

Junction Box Optimized, Dependable

Thermal runaway standard

→ Further reduce hot spot failure

High temperature reverse bias standard

 \rightarrow Reduce failure rate of bypass diode

Cable riveting compression ratio

→ Reduce cable loss & arc-faults

Cell & EVA Revolutionary, Benchmark

Cell Four-point bending standards → Reduce cell crack & mechanical failure

Co-extrusion POE standard

→ Reduce PID risk

EVA acetic acid content standard

 \rightarrow Reduce busbar/ ribbon corrosion risk

LONG

Conclusion

To ensure the lifetime operation of PV plants and return on investment, raw material and module evaluation standards of PV modules need continuous research and optimization.

-;\...

The industry needs to conduct more research and studies on standardizing the process for addressing module failures, including cause validation and solution implementation. Then, corresponding evaluation and testing standards can be developed to minimize failures.

It is currently unclear whether the existing mainstream testing standards can validate 30 years of product reliability. Continuous research by professionals in the PV industry is needed to evaluate the potential of scientifically based testing standards that avoid overkill and minimize testing costs and cycles.

LONG

Alyssa Huang, Product Marketing Manager mhuang@longi.com