## this **Webinar** is powered by **Trina Solar**

#### 13 July 2023 10:00 am – 11:00 am | EDT, New York City 11:00 am – 12:00 pm | BRT, São Paulo CEST, Berlin, Madrid 4:00 pm – 5:00 pm



**Anne Fischer** Senior Editor pv magazine USA



## **Reliability analysis of n-type** modules



**Rocky Li Product Manager Trina Solar** 



**Cherif Kedir CEO and President** RETC



**Jason You Senior Project Engineer UL-CCIC** 

## pv magazine Webinars

# Welcome!

Do you have any questions? ? 
Send them in via the Q&A tab. 
We aim to answer as many as we can today!
You can also let us know of any tech problems there.

We are recording this webinar today. We'll let you know by email where to find it and the slide deck, so you can re-watch it at your convenience.



# Leading in the Mera of solar energy





# Catalog

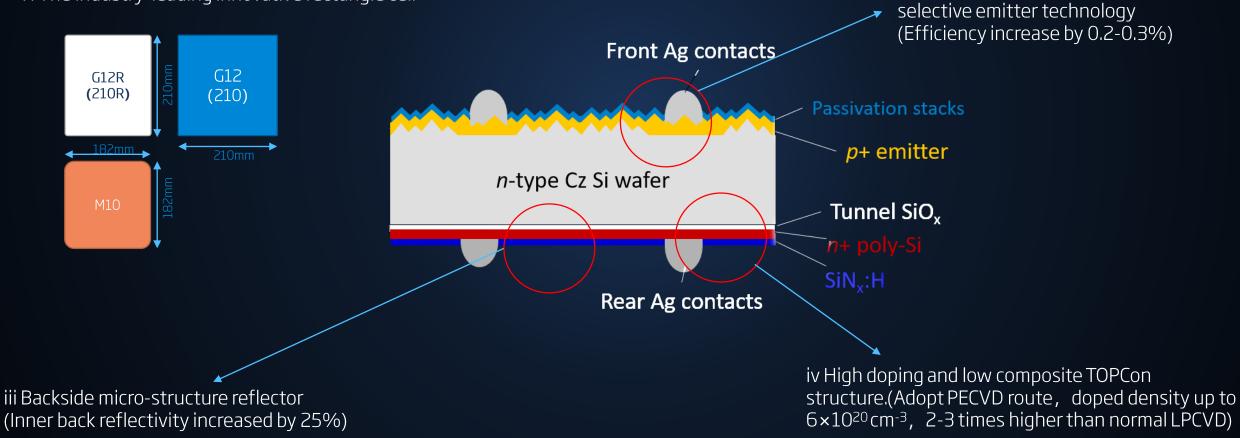
Trina solar i-TOPCon technology roadmap

- "Golden size" Vertex N i-TOPCon module series
- Vertex N- i-TOPCon products superior reliability



### Trina Solar i-TOPCon technology development roadmap





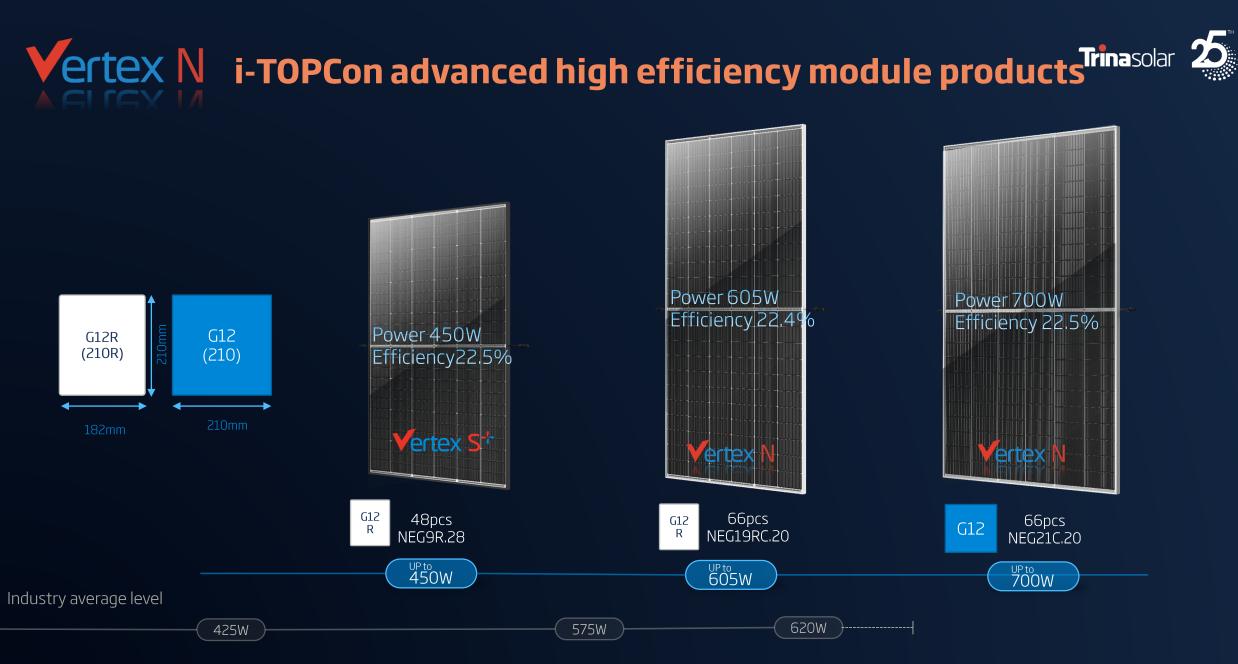



ii .Large area boron doped by laser,

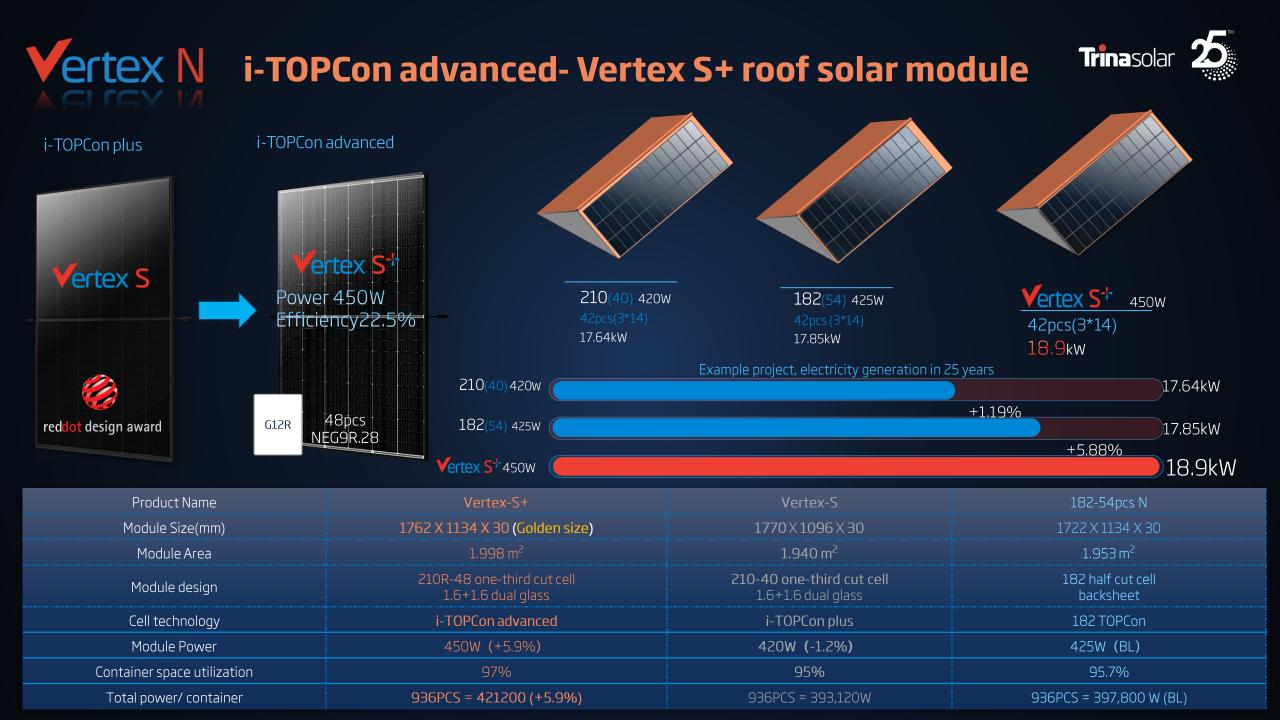
i-TOPCon advanced: Cell efficiency up to 26.2% (210R rectangle cell, selective emitter, back side micro-structure reflector, high doping and low composite TOPCon structure.)

#### i . The industry-leading innovative rectangle cell






# Catalog

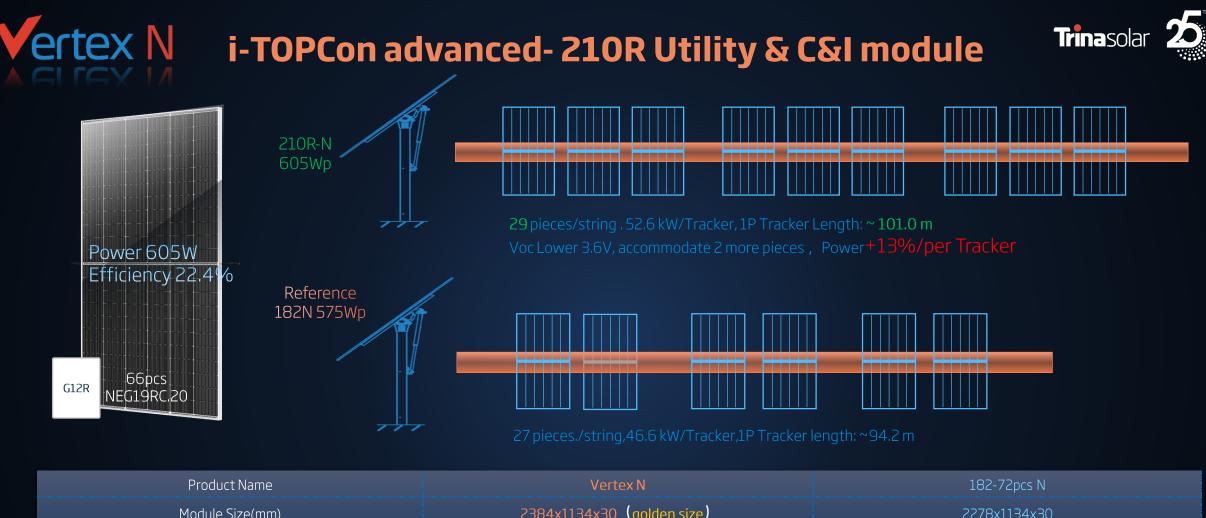

Trina solar i-TOPCon technology roadmap

- "Golden size" Vertex N i-TOPCon module series
- Vertex N- i-TOPCon products superior reliability



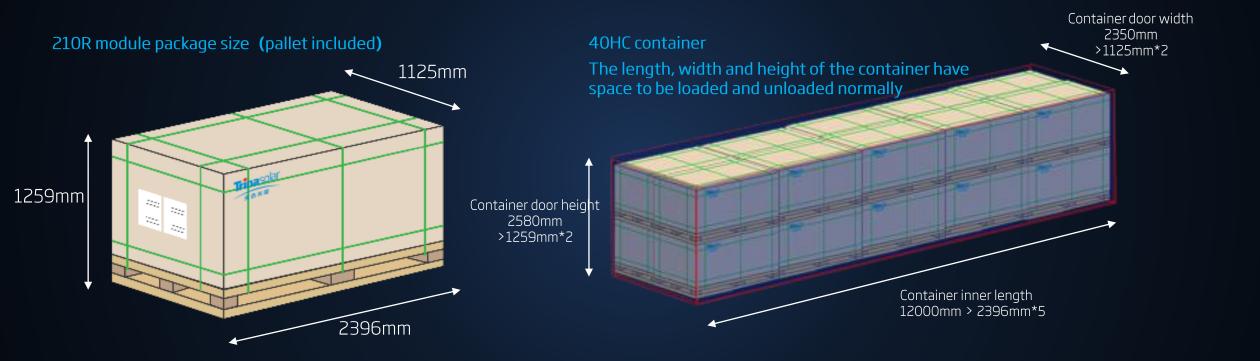


Trina solar N-iTOPCon Vertex high efficiency series solar modules ,fit for all kinds of application scenarios.






210R - 48pcs Golden size : Ultimate small size format design .



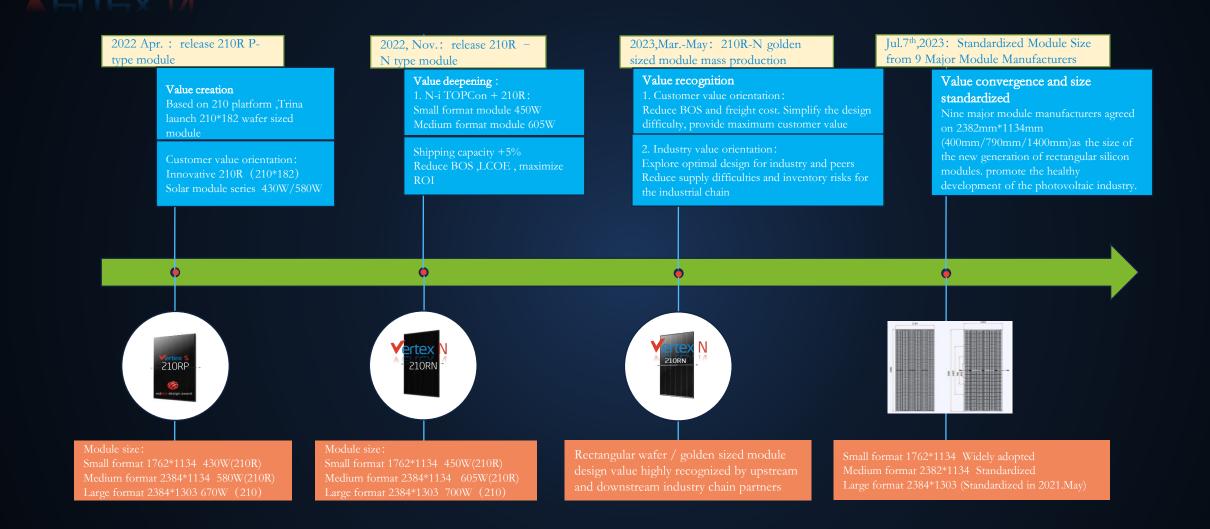

Extremely safe, distributor, installer friendly, easy to handle and install



| Module Size(mm)             | 2384x1134x30(golden size)      | 2278x1134x30                  |
|-----------------------------|--------------------------------|-------------------------------|
| Module design               | 210Rx66 half cut<br>Dual glass | 182x72 half cut<br>Dual glass |
| Cell technology             | i-TOPCon advanced              | 182 TOPCon                    |
| Module Power output         | 605W (+5.2%)                   | 575W (BL)                     |
| Container space utilization | 98.5%                          | 94.5%                         |
| Total power/ container      | 435,600(+5.2%)                 | 414,000                       |

## **i-TOPCon advanced-210R Utility & C&I module** 210R -66pcs Golden size:2384\*1134mm, Maximize the use of container space




|        | Module power | Pieces per pallet | Pallets per container | Container space utilization | Power total per container |                  |
|--------|--------------|-------------------|-----------------------|-----------------------------|---------------------------|------------------|
| 182-N  | 575W         | 36                | 20                    | 94.5%                       | 414000W                   | BL               |
| 210R-N | 605W         | 36                | 20                    | 98.5%                       | 435,600W                  | +21,600W (+5.2%) |



| Product Name                | Vertex N (2023)                                 | Vertex N (2022)                                  | 182-78pcs N                    |
|-----------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------|
| Module Size(mm)             | 2384x1303x33 <b>(golden size)</b>               | 2384x1303x33                                     | 2465x1134x30                   |
| Module design               | 210-66 half cut cell<br>2+2 bifacial dual glass | 210-66 half cut glass<br>2+2 bifacial dual glass | 182 half cut glass<br>Bificial |
| Cell technology             | i-TOPCon advanced                               | i-TOPCon plus                                    | 182 TOPCon                     |
| Module Efficiency           | 700W (+12.9%)                                   | 680W (+10.6%)                                    | 620W (BL)                      |
| Container space utilization | 97.6%                                           | 97.6%                                            | 81.4%                          |
| Total power/ container      | 594PCS = 415,800(+16.4%)                        | 594PCS = 403920(+13.1%)                          | 576PCS = 357,120(BL)           |

## Colden size standardized - take the lead once again

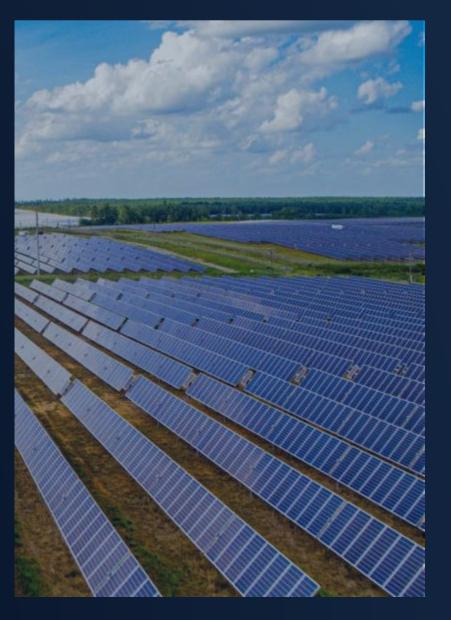




## Vertex N i-TOPCon advanced 210R:BOS,LCOE assessment



#### **Project Information**


|                  | Ground-mounted               |
|------------------|------------------------------|
| Location         | Dubai, UAE                   |
| AC capacity      | 4~MW (Standard single array) |
| Type of inverter | Central inverter             |
| Mounting         | NX Horizon 1P tracker        |
| Type of module   | Bifacial module              |



| PV System | n Configuration       | (Standard single | e array)        |
|-----------|-----------------------|------------------|-----------------|
|           |                       | Vertex N         | Reference 182-N |
| ltem      | Module type           | NEG19RC.20       | 182N-72pcs      |
|           | Module power          | 605W             | 575W            |
|           | Module size (mm)      | 2384×1134×30     | 2278×1134×30    |
| Module    | Open circuit voltage  | 48.7 V           |                 |
|           | Short circuit current | 15.83 A          | 14.31 A         |
| Mounting  | Installation          | NX Horizor       | n 1P tracker    |
| Mounting  | Pitch                 | E-W 6.91m        | E-W 6.60m       |
| Inverter  | Inverter type         | MVPS             | 4000            |
|           | Inverter power (AC)   | 400              | 0 kW            |
|           | Inverter number       | 1                | 1               |
|           | Module/string         | 30               |                 |
|           | String power          | 18,150W (+13%)   |                 |
|           | Tracker configuration | 1V90 Portrait    |                 |
| Lavout    | String/tracker        | 3                | З               |
| Layout    | String number         | 279              |                 |
|           | Tracker units         | 93               | 105             |
|           | Module number         | 8370             | 8820            |
|           | GCR (%)               | 34.50%           | 34.50%          |
| Capacity  | DC capacity (kW)      | 5063,85          | 6071.5          |
|           | AC capacity (kW)      | 4000             | 4000            |
|           | DC/AC ratio           | 1.266            | 1.268           |

# Vertex N i-TOPCon advanced 210R:BOS,LCOE assessment

| PV module                       |                                     | NEG19RC.20 | 182N-575W |
|---------------------------------|-------------------------------------|------------|-----------|
|                                 | Torque Tube (kg)                    | 1231.28    | 1150.18   |
|                                 | Normal pile (kg)                    | 720.99     | 640.70    |
|                                 | Motor pile (kg)                     | 99.60      | 95.32     |
|                                 | Purlin (kg)                         | 406.69     | 380.16    |
| Structure<br>Part               | Slew driver seat (kg)               | 52.58      | 48.83     |
|                                 | Tube connector (kg)                 | 33.38      | 33.38     |
|                                 | Purlin hoop (kg)                    | 64.40      | 60.20     |
|                                 | Bearing pedestal (kg)               | 11.40      | 10.64     |
|                                 | Bearing seat (kg)                   | 50.00      | 50.00     |
|                                 | Limit baffle (kg)                   | 4.00       | 4.00      |
|                                 | Control box holder (kg)             | 2.88       | 2.88      |
|                                 | Bearing (\$/W)                      | 0.002      | 0.002     |
|                                 | Sub-total price (\$/W)              | 0.0728     | 0.0759    |
| Motor                           | Sub-total price (\$/W)              | 0.0084     | 0.0095    |
| Communication<br>& Control      | Control box (\$/W)                  | 0.0028     | 0.0032    |
|                                 | Communication box and cables (\$/W) | 0.0001     | 0.0001    |
|                                 | Damper                              | 0.0045     | 0.0051    |
|                                 | Sub-total price (\$/W)              | 0.0080     | 0,0090    |
| Total price (\$/W)              |                                     | 0.0893     | 0.0946    |
| ncluding installation cost \$/W |                                     | 0.1027     | 0.1087    |



Trinasolar 2

### Vertex N i-TOPCon advanced 210R:BOS,LCOE assessment

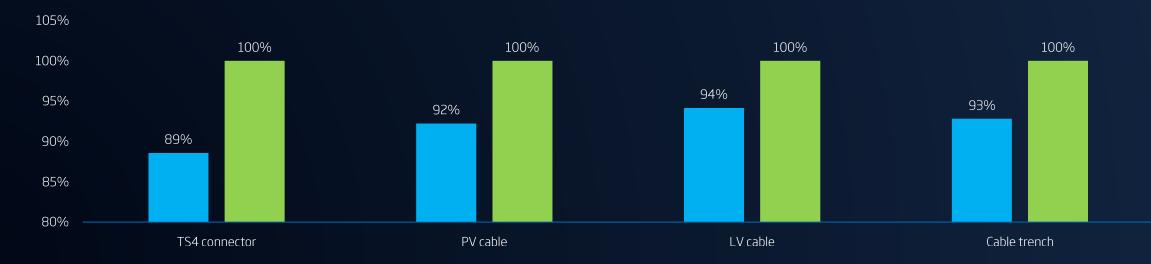
Trinasolar 2

TS4 connector



| Module type          | NEG19RC.20  | 182N-575W   |
|----------------------|-------------|-------------|
| Combinerbox (unit)   | 18(16 in 1) | 18(18 in 1) |
| TS4 connector (pair) | 558         | 630         |
| PV cable (m)         | 43367       | 47028       |
| LV cable (m)         | 1706        | 1812        |
| Cable trench (m)     | 646         | 696         |

#### PV cable




#### LV cable trench





■ NEG19RC.20 ■ 182N-575W



### i-TOPCon advanced 210R:BOS,LCOE assessment

0.200

0.198

0.196

0.194 0.192

0.190

0.188

0.186

0.184

0.182 0.180

**Trina**solar



Module type NEG19RC.20 182N-575W Module installation 0.0116 0.0122 Solar inverter Combiner box 0.0039 0.0039 TS4 connector 0.0003 0.0003 PV cable 0.0097 0.0105 LV cable Cable trench 0.0023 0.0025 0.0720 Electrical system 0.0704 1P Tracker 0.1027 0.1087 Module transportation 0.0041 0.0039 **Total BOS\*** 0.1885 0.1970 **BOS** saving Baseline -0.0085

#### Unit: USD/Wp



BREAKDOWN OF BOS\* SAVING

The result shows that the Vertex NEG19RC.20-605W module performs better, with a saving of 0.85 \$ct in CAPEX and 1.2% in LCOE than 182N-575W.



# Catalog

Trina solar i-TOPCon technology roadmap

- "Golden size" Vertex N i-TOPCon module series
- Vertex N- i-TOPCon products superior reliability



# Vertex N i-TOPCon advanced reliability





Electric Reliability

**PVST** State Key Laboratory of PV Science and Technology **Optimal Product Design** 

Trinasolar **All Stages Product Quality Assurance System** 

# i-TOPCon advanced reliability





Trina i-TOPCon advanced products passed various extended reliability tests(TC, DH, Letid, PID, UV, compound mechanical tests) in reputable 3<sup>rd</sup> party labs.

## **Manufacturing capacity of Trina**

### Suqian

Xining (Si material)

Yancheng

Changzhou

Thailand &Vietnam Yiwu Huaian 2023 module capacity



2023 cell capacity

75 <sub>gw</sub>

i-TOPCon 40GW

2023 Si ingot capacity





# **THANKS!**





# RETC

## Reliability Analysis of Trina Solar's Ntype Modules

Cherif Kedir | July 13, 2023



© 2023 RETC, LLC / www.retc-ca.com

### Presented by



#### cherif@retc-ca.com

### **Cherif Kedir**

#### **President & CEO**

Cherif is a solar industry veteran of 17+ years with experience extending from product development, product engineering, yield enhancement, performance enhancement, test site development, reliability and durability testing, bankability, to certification testing. He also has an extensive 15-year background in Semiconductors, specifically with product engineering, testing, and failure analysis.



# RETC

Since 2009, downstream manufacturers, developers, independent engineers, and financiers have trusted RETC to test and vet their modules, inverters, energy storage systems, and racking products.

ACCREDITED

A2LA ISO / IEC 17025 Accreditation

- Complete Design Review & Support
- Pre-Certification Support
- Certification Testing
- Best-in-Class Turnaround Time
- World Renown Bankability Testing Data
- IE Flexibility
- Global Partnerships
- Close Relationships with Developers/Banks



IEC CBTL (Certifying Body Test Laboratory)



UL DAP (Data Acceptance Program)



Intertek RTL (Recognized Test Laboratory)



TUV Rheinland Partner Laboratory



VDE Qualified Test Laboratory

CALSSA Membership

CALIFORNIA SOLAR + STORAGE ASSOCIATION



# WHY USE THE THRESHER TEST?



### How is it performed?





© 2023 RETC, LLC | www.retc-ca.com

ALL RIGHTS RESERVED |  ${\bf 5}$ 

### The Thresher Test

A series of tests designed to put PV modules through a rigorous durability vetting protocol:

- Provide detailed info on long-term safety and power output
- Identify modules with truly differentiated long-term reliability and performance advantages





#### PAN File with AOI/IAM

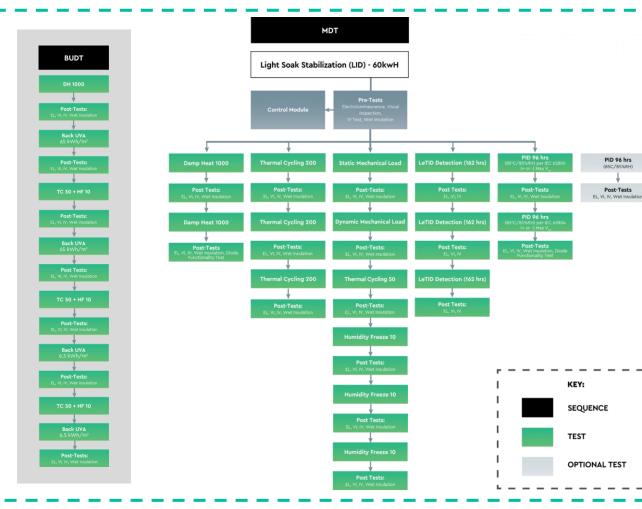
per IEC61853-1/-2, includes .pan file extrapolations +/-5% of tested bin LOW

П

S III

Ŷ

ш


THRESH



Ultraviolet Exposure (UV)

Light & Elevated Temperature-Induced Degradation (LeTID)

**CEC** Certification



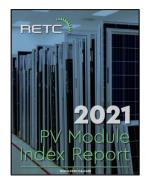
RETC

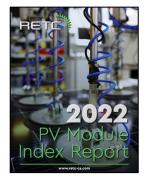
© 2023 RETC, LLC | www.retc-ca.com

# PV MODULE INDEX OVERVIEW & RESULTS



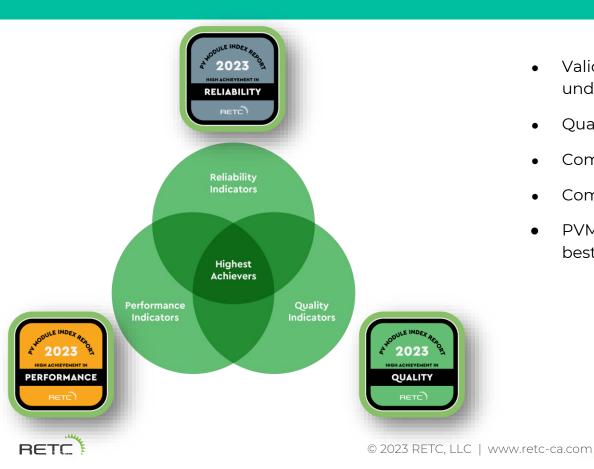
© 2023 RETC, LLC | www.retc-ca.com


### About the PVMI


The PVMI is a yearly compilation of **reliability**, **performance**, and **quality** indices generated by RETC with leading PV module manufacturers.

- Creating a report that is free and accessible to all
- Providing specific, data-backed findings
- Reporting noteworthy performance and trends
- Objectively highlighting PV manufacturers' accomplishments and showing who is best at manufacturing product in the industry



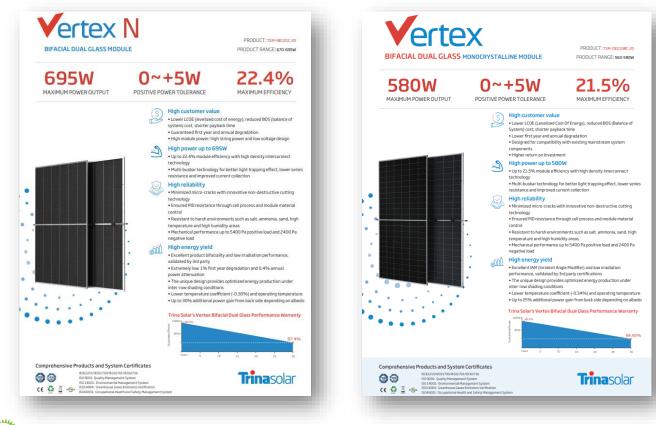









### **PVMI** Differentiation




- Validated bill of materials manufactured under supervision
- Quality Audit and process assessment
- Comprehensive reliability testing
- Comprehensive Performance Testing
- PVMI High Achievers must demonstrate best in class ranking in all categories

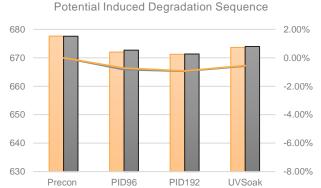


# Trinasolar in the RETC PVMI


RET

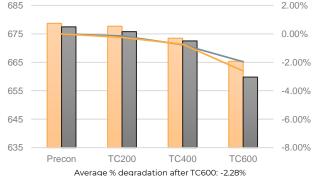




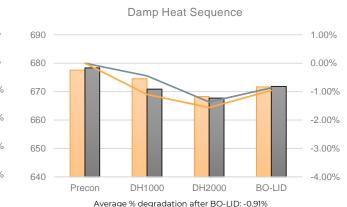

© 2023 RETC, LLC | www.retc-ca.com

### Thresher Test Results - TSM-NEG21C.20

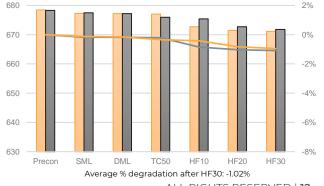



.

RETC




#### Average % degradation after UVsoak: -0.56%






#### © 2023 RETC, LLC | www.retc-ca.com







### Thresher Test Results - TSM-NEG21C.20

.

.

•

•

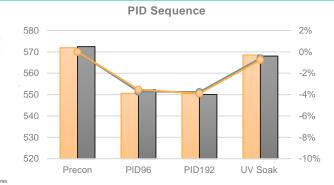
.

CE 🗿 📱 🧐 ISO14064: Greenhouse cases compared to a state ty Management System

RET

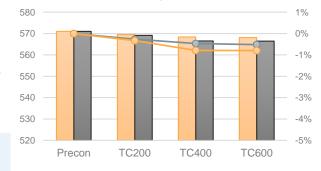


Average % degradation after post-LID2: -0.31%


© 2023 RETC, LLC | www.retc-ca.com

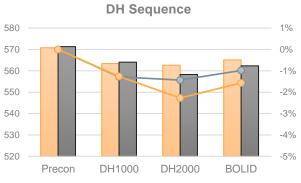
### Thresher Test Results - TSM-565DEG19RC.20



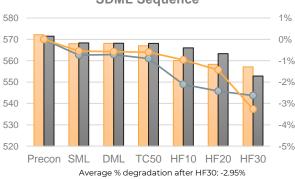

٠

RET




Average % degradation after PID+UV Soak: -0.68%

#### **TC Sequence**




#### Average % degradation after TC600: -0.66%

© 2023 RETC, LLC | www.retc-ca.com




Average % degradation after BOLID: -1.28%



#### SDML Sequence

ALL RIGHTS RESERVED | 14

### Thresher Test Results - TSM-565DEG19RC.20



٠

•

00

RET

Average % degradation after LID1: -0.40%; after LID2: -0.61%

© 2023 RETC, LLC | www.retc-ca.com











## FOR MORE INFO

#### www.retc-ca.com · info@retc-ca.com





© 2023 RETC, LLC | www.retc-ca.com

ALL RIGHTS RESERVED | 17



### Performance Advantages of Topcon PV modules

Jason You

2023-07-13





- **1** Introduction of IEC 61853 series of standards
- 2 Key control points of PAN file testing
- **3** Performance advantages of TOPCon modules

### 1.

# Introduction of IEC 61853 series of standards





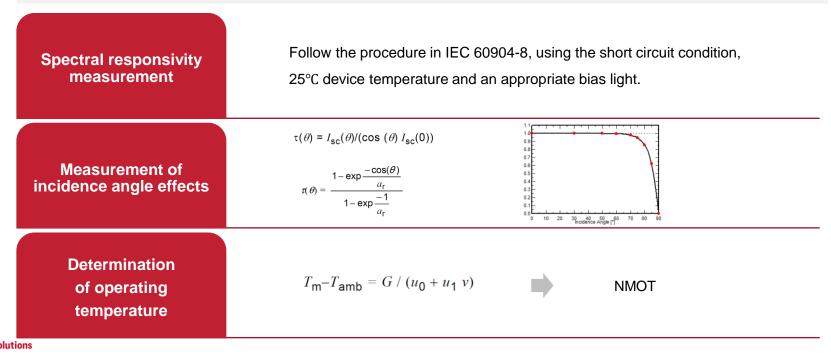
### Scope and object

Photovoltaic (PV) modules are typically rated at STC (25 °C cell temperature, 1 000 W·m<sup>-2</sup> irradiance, and air mass (AM) 1.5 global (G) spectrum). However, the PV modules in the field operate over a range of temperatures, irradiance, and spectra. The object of IEC 61853 is to accurately predict the energy production of the modules under various field conditions.

| IEC 61853-1 | Photovoltaic (PV) module performance testing and energy rating – Part 1: Irradiance and temperature performance measurements and power rating                 | Edition 1.0 | 2011 | PAN file |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|----------|
| IEC 61853-2 | Photovoltaic (PV) module performance testing and energy rating - Part 2: Spectral responsivity, incidence angle and module operating temperature measurements | Edition 1.0 | 2016 |          |
| IEC 61853-3 | Photovoltaic (PV) module performance testing and energy rating - Part 3: Energy rating of PV modules                                                          | Edition 1.0 | 2018 |          |
| IEC 61853-4 | Photovoltaic (PV) module performance testing and energy rating - Part 4: Standard reference climatic profiles                                                 | Edition 1.0 | 2018 |          |






Photovoltaic (PV) module performance testing and energy rating – Part 1: Edition 1.0 2011 Irradiance and temperature performance measurements and power rating

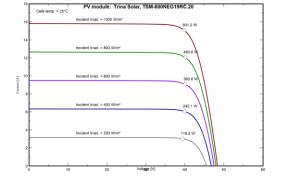
| Irradiance Spectrum |       |       | Module temperature |       |       |  |
|---------------------|-------|-------|--------------------|-------|-------|--|
| W⋅m <sup>-2</sup>   |       | 15 °C | 25 °C              | 50 °C | 75 °C |  |
| 1 100               | AM1,5 | NA    |                    |       |       |  |
| 1 000               | AM1,5 |       |                    |       |       |  |
| 800                 | AM1,5 |       |                    |       |       |  |
| 600                 | AM1,5 |       |                    |       |       |  |
| 400                 | AM1,5 |       |                    |       | NA    |  |
| 200                 | AM1,5 |       |                    | NA    | NA    |  |
| 100                 | AM1,5 |       |                    | NA    | NA    |  |



### IEC 61853-2

Photovoltaic (PV) module performance testing and energy rating - Part 2:Edition 1.02016Spectral responsivity, incidence angle and module operating temperaturemeasurementsEdition 1.02016




### **PAN file**

The PAN file is created using PVsyst, with the PV module's basic information, nominal STC parameters, measurement data of different irradiance and different temperature, Temperature coefficient, IAM, etc.



UL-CCIC Company Limited (China)

| Manufacturer                          | Trina Solar                                | Commercial data                      |                       |
|---------------------------------------|--------------------------------------------|--------------------------------------|-----------------------|
| Model                                 | TSM-600NEG19RC. 20                         | Availability : Prod                  | . Since 2022          |
|                                       |                                            | Data source :                        | UL 2022               |
| Pnom STC power (manufacturer)         | 600 Wp                                     | Technology                           | Si-mono               |
| Module size (W x L) 1.                | 134 x 2.384 m <sup>2</sup>                 | Rough module area (Amodule)          | 2.70 m <sup>2</sup>   |
| Number of cells                       | 2 x 66                                     | Sensitive area (cells) (Acells)      | 2.19 m <sup>2</sup>   |
| Specifications for the model (ma      | nufacturer or measureme                    | ent data)                            |                       |
| Reference temperature (TRef)          | 25 °C                                      | Reference irradiance (GRef)          | 1000 W/m <sup>2</sup> |
| Open circuit voltage (Voc)            | 48.4 V                                     | Short-circuit current (Isc)          | 15.82 A               |
| Max. power point voltage (Vmpp)       | 40.3 V                                     | Max. power point current (Impp)      | 14.91 A               |
| => maximum power (Pmpp)               | 600.9 W                                    | Isc temperature coefficient (muIsc)  | 6.0 mA/°C             |
| One-diode model parameters            |                                            |                                      |                       |
| Shunt resistance (Rshunt)             | 500 Q                                      | Diode saturation current (IoRef)     | 0.017 nA              |
| Serie resistance (Rserie)             | 0.20 Q                                     | Voc temp. coefficient (MuVoc)        | -117 mV/°C            |
| Specified Pmax temper. coeff. (muPMa  | xR) -0.30 %/°C                             | Diode quality factor (Gamma)         | 1.04                  |
|                                       |                                            | Diode factor temper, coeff. (muGamm  | a) 0.000 1/*C         |
| Reverse Bias Parameters, for use      | e in behaviour of PV array                 | s under partial shadings or mismatcl | ı                     |
| Reverse characteristics (dark) (BRev) | <ol> <li>3. 20 mA/V<sup>2</sup></li> </ol> | (quadratic factor (per cell))        |                       |
| Number of by-pass diodes per module   | 3                                          | Direct voltage of by-pass diodes     | -0.7 V                |
| Model results for standard condit     |                                            | 1000 W/m <sup>2</sup> , AM=1.5)      |                       |
| Max. power point voltage (Vmpp)       | 39. 9 V                                    | Max. power point current (Impp)      | 15.07 A               |
| Maximum power (Pmpp)                  | 601.2 Wp                                   | Power temper. coefficient (muPmpp)   | −0.30 %/°C            |
| Efficiency(/ Module area) (Eff mod)   | 22.2 %                                     | Fill factor (FF)                     | 0.785                 |





### 2.

# Key control points of PAN file testing





### **Test equipment for PAN file in UL**

- 1. High-precision test simulator, meets the A+ standard.
- 2. Independent ambient temperature control system, controls the ambient temperature at 25 within  $\pm$  0.5 °C.
- 3. Multi-point temperature measurement of components, real-time monitoring of uniformity. The temperature uniformity of the module is controlled within 2°C.
- 4. IAM testing supports full-size samples, and highprecision angle measurement equipment can reach 0.01°.



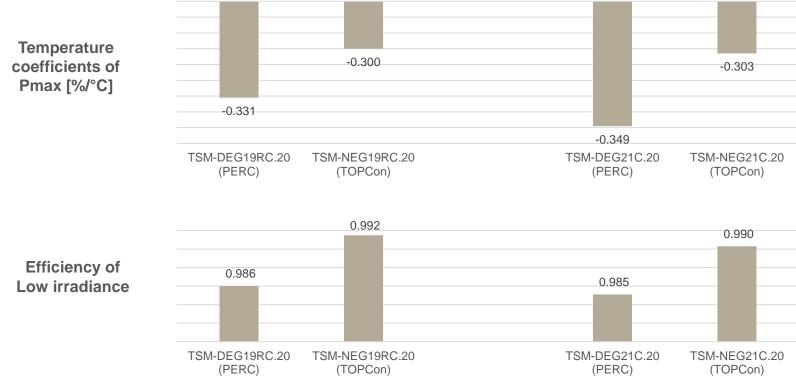




### **Key control points**

The following control points are considered for the accuracy of the test results:

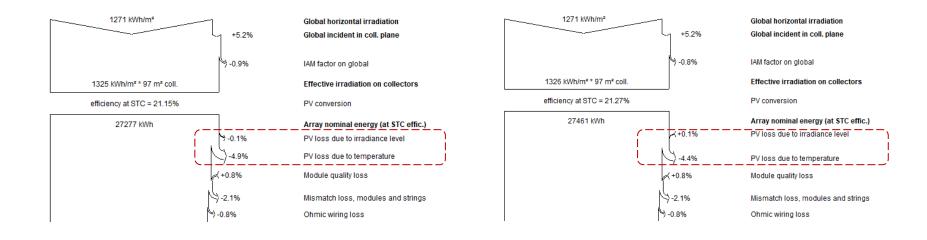
- Factors that affect the accuracy of device measurement, such as voltage, current, power.
- The accuracy of irradiance, such as spectra, uniformity, stability, etc.
- Influence factors of WPVS calibration measurement, spectral matching, etc.
- Coplanar deviation of the measured sample and WPVS.
- Factors that affect the accuracy of sample temperature measurement.
- The inhomogeneity of sample temperature.
- The temperature differences between the inside cell and substrate of the sample.
- Test repeatability by different person.
- Influencing factors of angle measurement (for IAM).




### **3**. Performance advantages of TOPCon modules





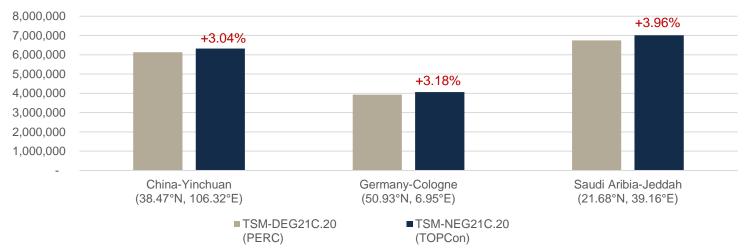

### Performance advantages of test results





### **Performance advantages in PVsyst simulation**

System Loss in a demo project, all settings are same except for PAN file of PV module.




TSM-DEG19RC.20 (PERC) TSM-NEG19RC.20 (TOPCon)



### **Performance advantages in PVsyst simulation**

Produced Energy (kWh/year) for 3.1 MW demo projects in different locations.



#### Produced Energy (kWh/year)





### Thank you

Jason.you@ul.com

**UL.com/Solutions** 

Safety. Science. Transformation.™

UL LLC © 2023. All rights reserved.

#### this Webinar is powered by Trina Solar

#### 13 July 2023

10:00 am – 11:00 am | EDT, New York City 11:00 am – 12:00 pm | BRT, São Paulo 4:00 pm – 5:00 pm | CEST, Berlin, Madrid



Anne Fischer Senior Editor pv magazine USA

### pv magazine Webinars

### Reliability analysis of n-type modules Q&A



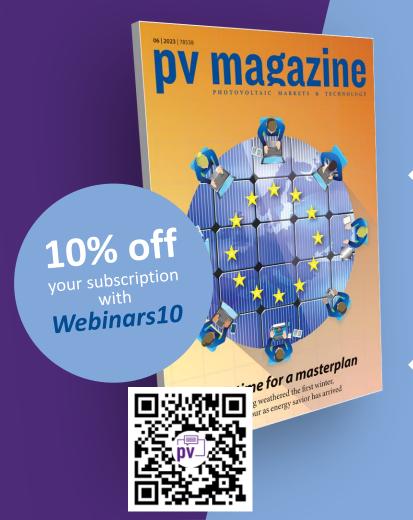
Rocky Li Product Manager Trina Solar



Cherif Kedir CEO and President RETC



Jason You Senior Project Engineer UL-CCIC




Most-

read

online!

### The latest news | print & online



Indoor perovskite PV solar cells with 32.0% efficiency by Emiliano Bellini



Chinese PV Industry Brief: Big module makers call for wafer standards

by Vincent Shaw





### Coming up next...

**Tuesday, 25 July 2023** 1:00 pm – 2:00 pm EDT, New York City 7:00 pm – 8:00 pm CEST, Berlin, Paris, Madrid **Monday, 31 July 2023** 2:00 pm – 3:00 pm CEST, Berlin, Paris, Madrid 4:00 pm – 5:00 pm Dubai

#### Many more to come!

The IRA domestic content bonus and its implications on developers and manufacturers How liquid cooled ESS helps achieving a lower LCOS for utilityscale applications In the next weeks, we will continuously add further webinars with innovative partners and the latest topics.

Check out our pv magazine Webinar program at:

www.pv-magazine.com/webinars

Registration, downloads & recordings are also be found there.



#### this Webinar is powered by Trina Solar



Anne Fischer Senior Editor pv magazine USA

# Thank you for joining today!

