

Steel manufacturing

countries

Customers in

155 countries

Employees in 2022

154,352 45.3

Million tonnes iron ore mined in 2022

Million tonnes crude steel made in 2022

Smarter steels for people and planet

Steel shipments in 2022

55.9 million tonnes

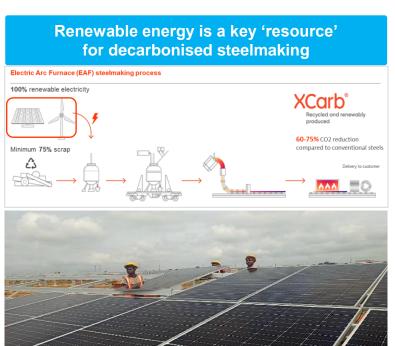
Research centers

Full-time researchers

1500+

R&D programmes

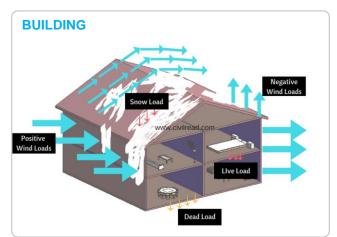
in progress

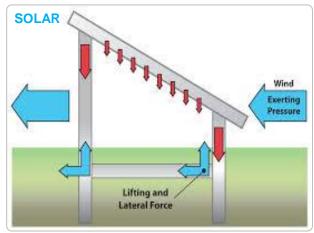

Trademark products

100+ 2<u>00+</u>

Magnelis®

Solar energy is crucial for us!


ArcelorMittal Green Energy (975 MW Solar+Wind for AMNS India)


Solar panel installation at

For solar structures or for buildings, foundations play the same fundamental roles:

- Foundations ensure mechanical stability & safety + durability over the expected lifetime.
- Foundations bear the investment, while inspection & maintenance possibilities remain limited.

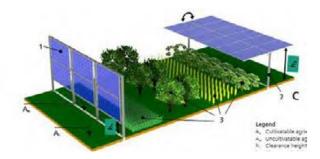
Foundations are on the critical path of solar projects


Similar load cases:

Dead loads
Live additional loads
Wind loads (+ or -)
Snow loads
Seismic loads

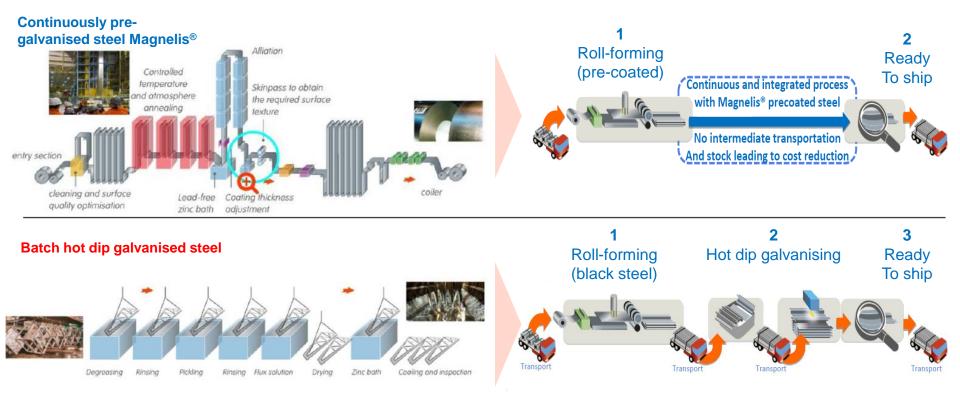
Similar ground
investigations needed:
Geological - Physical
Mechanical
Chemical
Electrical

For solar ground mounted structures, various solutions for foundations depending on: soil hardness, load bearing capacity, aggressiveness & terrain "history".


Mounted PV: steel foundations explored. PV webinar 17 November 2023

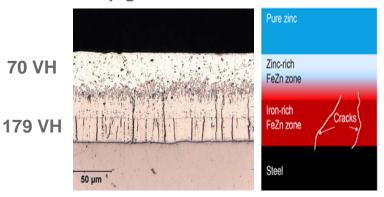
For Agri-PV, foundations play an even more important role, with additional specific constraints:

Higher poles + longer span + more corrosive environment (presence of animals & machineries = supplementary chemical & physical aggression)

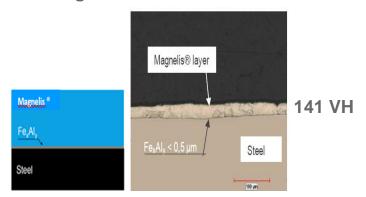

Cold formed C / Σ -channels piles can be designed more efficiently:

with a wide range of steel grades, more geometries & more protection options

Production	Protection	Geometry	Grades
Cold formed C / Σ channels	Continuously hot dip coated steel Magnelis® or Batch hot dip galvanised steel	Tailor-made section (height x width) Adjusted steel thickness with low tolerances	From S350 MPa Up to S700 MPa
Hot rolled sections W or H beams	Only batch hot dip galvanised steel possible	Standard geometries Symmetrical section Heavy / oversized wall thickness	From S235 MPa Up to S460 MPa


Continuously pre-galvanised steel offers substantial benefits:

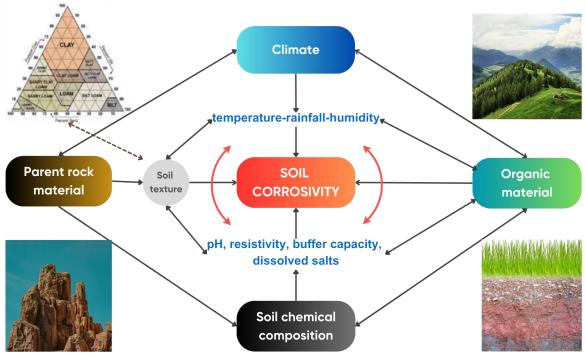
time saving (simplified logistics & project management), cost reduction, 100% online coating control, higher coating adhesion...


Different processes lead to different products and in-use properties

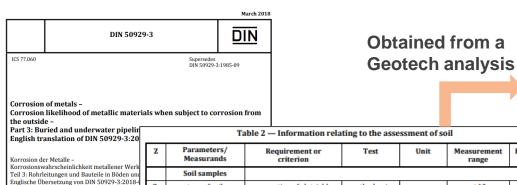
Batch hot dip galvanised steel cross section

- Layered structure with successive Zn-Fe phases layers
- Upper pure zinc layer = only ~30% of the total thickness
- Properties depend on the %Fe within each layer

Magnelis® cross section


- Homogeneously alloyed coating layer
- Uniform mechanical properties and corrosion resistance

Magnelis® surface hardness is much higher compared to the top Zn layer of batch hot dip galvanised steel, leading to a better resistance to abrasive wear and scratches.


In comparison with atmospheric conditions, soils are complex environments with a specific corrosivity phenomenon (uniform & pitting corrosion)

Since 2006, ArcelorMittal has developed extensive expertise in soils, including collaborations with external laboratories, enabling us to study solar projects globally.

German standard DIN 50929-3:2018 to categorize corrosion load of soils

Z	Parameters/ Measurands	Requirement or criterion	Test	Unit	Measurement range	Rating
	Soil samples					
Z_1	type of soil — cohesion	proportion of elutriable matter	method as in DVGW GW 9: 2011-09, Annex B, Module 5	mass fractions in %	< 10 10 to 30 30 to 50 50 to 80 > 80	+4 +2 0 -2 -4
	— contamination	DIN EN 12501-2:2003-08, Table 1				-12
Z_2	specific electrical soil resistivity	lowest resistivity after addition of water, measured in the cell	method as in DVGW GW 9: 2011-09, Annex B, Module 2	Ωm	> 500 200 to 500 200 to 50 20 to 50 10 to 20 < 10	+4 +2 0 -2 -4 -6
Z_3	moisture content of soil and reference for $\rm Z_6$ to $\rm Z_{10}$	water content after drying at 105°C	method as in DVGW GW 9: 2011-09, Annex B, Module 1	mass fractions in %	< 20 > 20	0 -1
Z_4	pH value	pH value for 50 % water content	method as in DVGW GW 9: 2011-09, Annex B, Module 2	_	> 9 6 to 9 4 to 6 < 4	+2 ^a 0 -1 -3

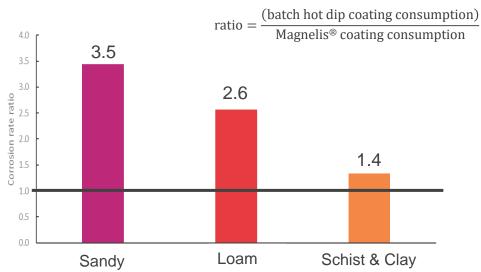
 $\begin{tabular}{l} Table 3 -- Classification of soils, corrosion load and likelihood of free corrosion of unalloyed and low-alloy ferrous materials \\ \end{tabular}$

	B_0 or B_1 values	Soil category	Corrosion load ^a	Likelihood of corrosion based on the B1 value		
l	base		l on the B_0 value	Pitting corrosion	Uniform corrosion	
l	≥ 0	Ia	very low	very low	very low	
ı	−1 to −4	Ib	low	low	very low	
ı	−5 to −10	II	medium	medium	low	
	< -10	III	high	high	medium	

The order of magnitude of the corrosion rate to be expected is specified in Table 1. In the case of pipes and tanks, priority shall be given to the assessment of permanent leak tightness. In this case, the rate of pitting corrosion is to be considered. In the case of structural components, priority shall be given to the assessment of permanent strength. In this case, the rate of uniform corrosion is to be considered.

a The corrosion load corresponds to the likelihood of free corrosion in the absence of extensive concentration cells (see 6.1.2).

Tested in real soil fields, Magnelis[®] shows lower corrosion rates than batch hot dip galvanised steels



© ArcelorMittal, French Corrosion Institute

Corrosion rate measured after 1 year testing in real soils

Magnelis® exhibit lower corrosion rates compared to batch hot dip galvanised steel, Improvement ratio up to 3.5

Even if scratched, Magnelis® is less affected by corrosion than batch hot dip galvanised material

Samples scratched with different loads leading to different damaged widths, after 2 years testing in a real loamy soil

Scratches are visible, but no corrosion initiation

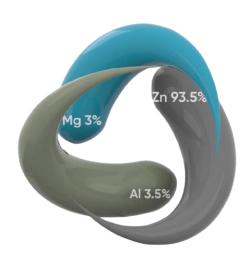
Scratches are barely visible, confused with the overall corrosion of the surface. Red rust visible inside the scratches.

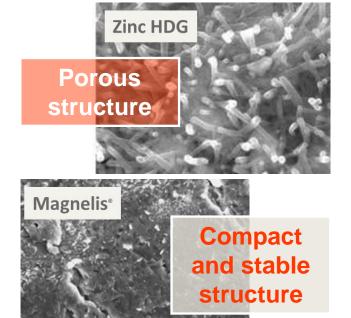
Improved protection of Magnelis® in soils was assessed by a third party

"Corrosion resistance of Magnelis® in soils was improved by an average factor of 3.8 compared to continuous hot dip zinc coating."

Statement from French Corrosion Institute. This lab, subsidiary of RISE Research Institutes of Sweden AB, is among the largest laboratories in the field of corrosion and corrosion protection of materials in the world. https://www.institut-corrosion.fr/?lang=en

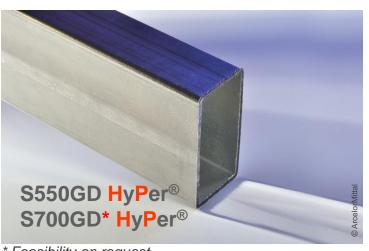
Details including data and types of soils are specified in the French Corrosion Institute's statement available on our website




Magnelis® is the answer to durable solar foundations

Continuous process
Automated on-line control

A unique composition
A full range of grades
and thicknesses



Specific corrosion products

Magnelis® range enlargement for solar foundations

ZM310 ZM430 ZM620 ZM800

* Feasibility on request

Enlarged range of coating weights

Enlarged range of high strength steels protected with Magnelis®

Depending on the soil corrosion load, calculated thanks to DIN standard, select the best solution for your solar foundations. We can support you in the selection.

What do our customers say?

Testimonies

Solar structure designer, manufacturer and installer.

Long-term users of Magnelis® for super structures.

Early adopters of Magnelis® heavy coatings for underground structures.

.... and many others!

Less deformation at the **top/head** of the piles →

355 MPa steel grade
Severe deformations at the top of the piles →

500 MPa steel grade
Reduced deformation at the top of the piles →

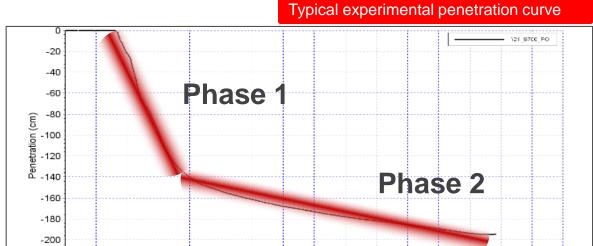
700 MPa steel grade
Almost no deformation at the top of the piles →

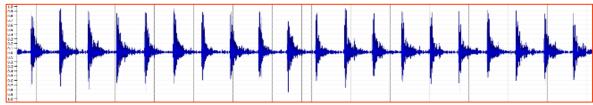
Less deformation at the **bottom** of the piles →

355 MPa steel grade

Severe deformations at the bottom of the piles →

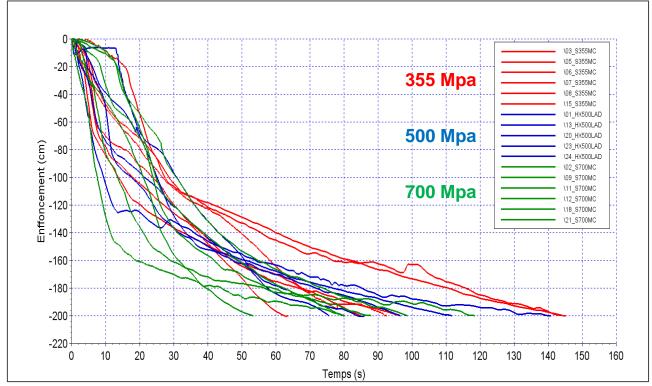
Reduced deformation at the bottom of the piles \rightarrow




Limited deformation at the bottom of the piles →

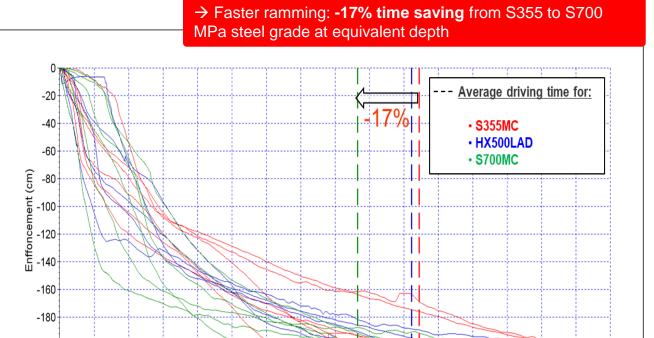
-220

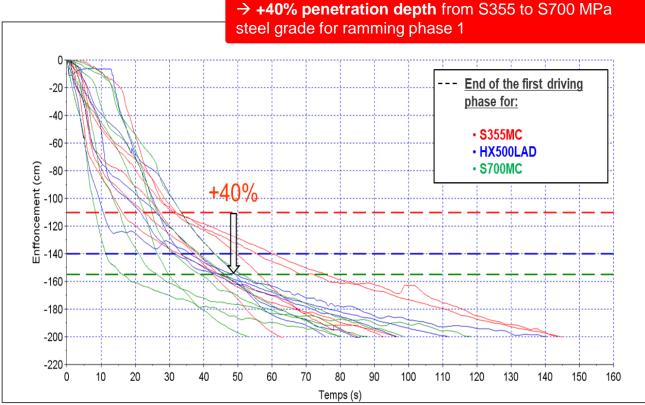
Time (s)


70

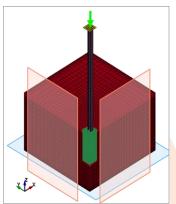
110

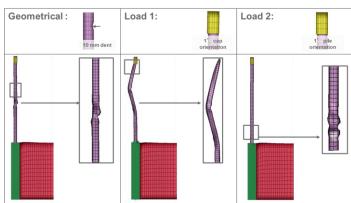
120


→ Faster ramming leading to reduced installation time & costs

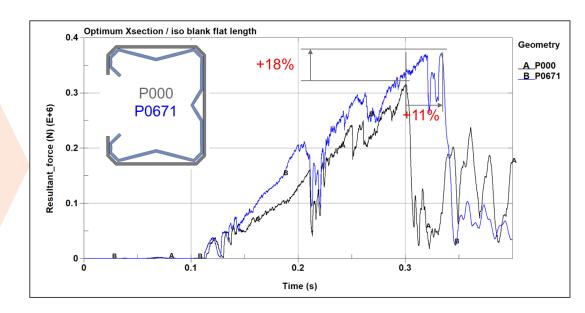


Temps (s)



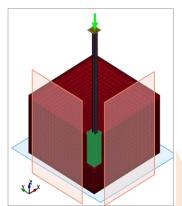


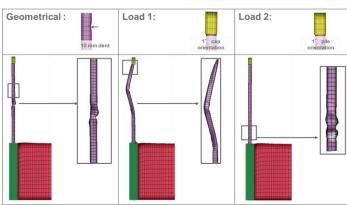
Modeling of Ramming


Influence of:

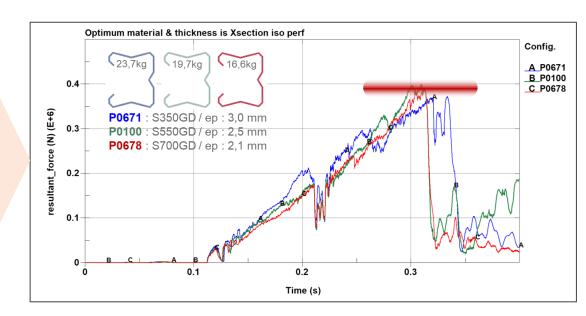
Steel grade Steel thickness Section geometry

→ +18% load increase with improved geometry at equivalent thickness





Modeling of Ramming


Influence of:

Steel grade
Steel thickness
Section geometry

→ -16% to -30% thickness reduction from S350 to S550 & to S700 MPa, at equivalent ramming force until buckling.

Solar PV industry needs & deserves sustainability

Analyzing PV in the Circular Economy

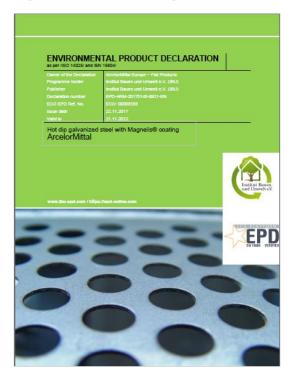
Supply chain transparency on the rise – Where is the solar industry?

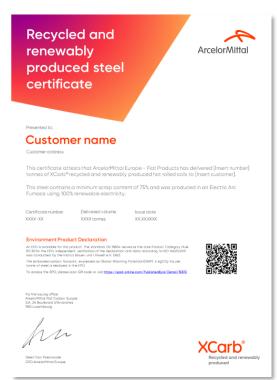
Learn how NREL is applying its modeling and analysis expertise to PV in the circular economy.

Integration of environmental, social and governance considerations in PV projects

Flagship Solar Supply Chain Sustainability Initiative Launches Public Consultation

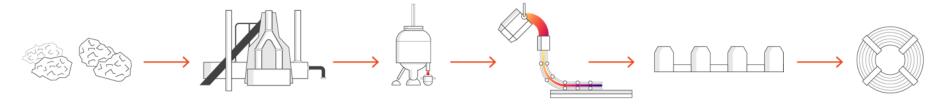
Today, the Solar Stewardship Initiative (SSI) has opened a process for interested organisations to provide feedback on its development.


MAY 17, 2023 SOLARPOWER EUROPE



1st environmental benefit: at design stage, Magnelis® can be produced with -70% less global warming potential thanks to our XCarb® recycled and renewable offer

Standard Magnelis® global warming potential **2570 kg CO₂e/ tonne**


- 70%

XCarb® Magnelis® global warming potential **797 kg CO₂e/ tonne**

ArcelorMittal

From the traditional steel making route based on mining...

1.

Iron ore / coal

Iron ore is processed to sinter and pellets Coal is being transformed into coke. 2.

Blast furnaces

In the blast furnaces, iron is produced by reducing iron ore with coke and coal.

Transforming the iron making process is at the core our decarbonisation strategy

3.

Basic oxygen steel plant

By blowing pure oxygen into the liquid iron, iron is transformed into steel.

4.

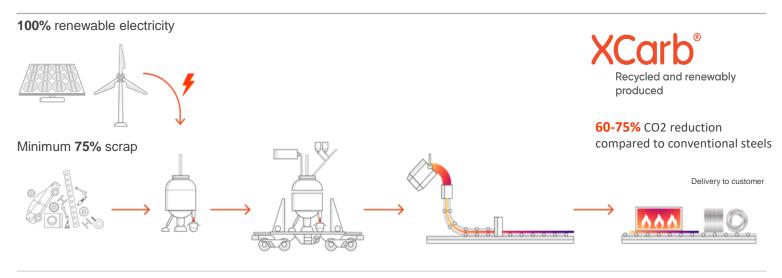
Casters

In the continuous casters, liquid steel is poured into slabs of steel

5.

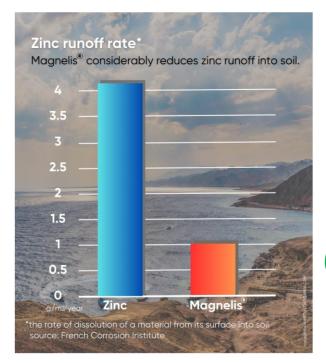
Hot strip mill and cold mill

The steel slabs are rolled into coils of steel


6.

Coil of steel.

... to XCarb® recycled and renewably produced

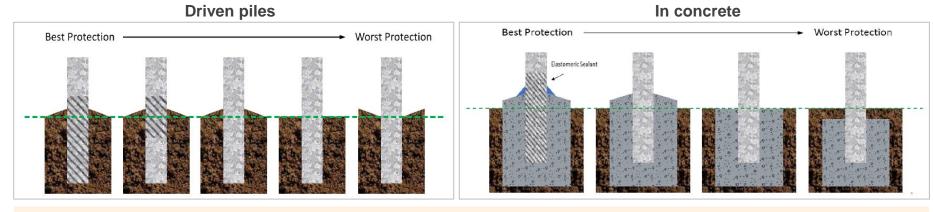

Electric Arc Furnace (EAF) steelmaking process

2nd environmental benefit:

during service lifetime, Magnelis® properties drastically limit run-off in soils

3rd environmental benefit:

steel is indefinitely recyclable and Magnelis® is REACH compliant


Magnelis® continuously hot dip coated steels can be used for any type of foundations: driven piles, embedded into concrete pads, etc.

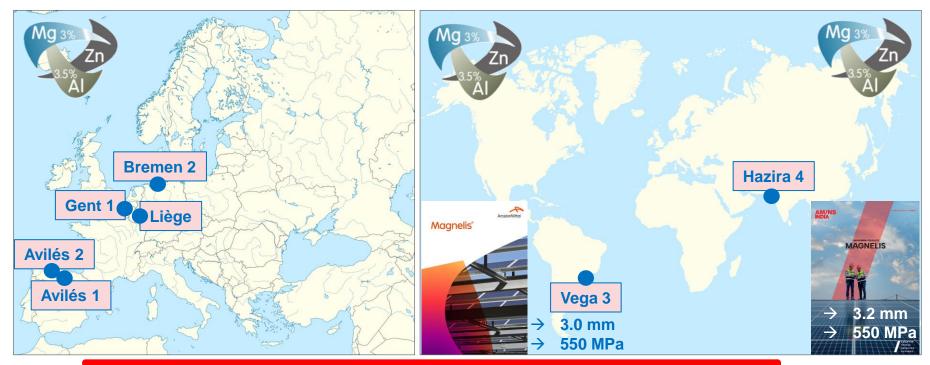
ArcelorMitta

Valid for pre- or post- galvanised poles in soils or in concrete.

Good practices to ensure longer durability of piles

In concrete:

- Avoid accumulation of water at the bottom of piles by creating slope of concrete surface
- Due to contraction of concrete, dilatation of steel, apply sealant at the steel / concrete interface


In soils: apply surface treatment (epoxy mastics, elastomeric polyurethan or bituminous paint) in the transition area

At the top / head of driven piles: apply Zinc rich paint (spray or brush)

Magnelis® continuously hot dip coated steel is becoming a global product

- → 5 production lines in Europe + 2 new lines in Brazil & India (AM-NS) in 2024
- → Large capacity offer for the largest solar projects

Magnelis® is available globally via ArcelorMittal's international sales network

Proven benefits of Magnelis® continuously hot dip coated steel for PV foundations rammed poles

Take-aways!

- 1. Foundations are key for solar mounting structures and deserve special care:
 - Mechanical stability
 - Durability versus corrosion
 - Project timing management (1st to be installed onsite)
 - Costs (≈1/3 of structure weight)
- 2. Magnelis® pre-coated steels can advantageously replace traditional batch hot dip galvanised poles.
 - Magnelis® is a more efficient protective coating than pure Zinc / layered coating
 - Magnelis® combined with High Strength Steels offers a lot benefits for driven piles: faster ramming, delayed refusal, less deformation at the top & less repairs. Optimising the C-channel section, allows further material saving.
 - It exhibits lower Zn run-off. Further CO₂ reduction achievable thanks to XCarb® recycled and renewably produced low-carbon emissions steel.
- 3. Magnelis® for poles has already been adopted by multiple mounting structure companies.
- 4. Magnelis® availability is enlarging in Europe, Brazil & India in 2024.

Do not hesitate to contact us to optimise your next projects!

Jérôme Guth, Head of Segments & Products Business Development jerome.guth@arcelormittal.com

Corinne Dieu,
Product Coordinator,
Metallic Coated Products
corinne.dieu@arcelormittal.com

Jean-Louis Remlinger, Solar Market Senior Analyst jean-louis.remlinger@arcelormittal.com

flateurope.technical.assistance@arcelormittal.com

Thank you

