this Webinar is M10 Solar Equipment

12 December 2023 4:00 pm – 5:00 pm | CET, Berlin 10:00 am – 11:00 am | EST, New York City

Mark Hutchins Editor pv magazine

Christian Carpaij Division Manager Engineering Planeco

AE Solar

Minimizing partial shading yield losses

Nils Klasen

Technology & Sales Manager M10 Solar Equipment

Jan Paschen

Scientific Researcher Photovoltaics Division Fraunhofer ISE

pv magazine Webinars

Welcome!

Do you have any questions? ?
Send them in via the Q&A tab.
We aim to answer as many as we can today!
You can also let us know of any tech problems there.

We are recording this webinar today. We'll let you know by email where to find it and the slide deck, so you can re-watch it at your convenience.

Shading in PV systems – a short field report

Planeco GmbH

Planeco was founded in 2011 by Roman Brunner and Claudius Bösiger and is located in Arlesheim, Switzerland.

Planeco specializes in the planning and construction of photovoltaic power plants. We are one of the market leaders in Switzerland, particularly in the field of building-integrated photovoltaics.

Since 2020 our local energy provider IWB holds a 60% stake in Planeco. Planeco currently has a total of 90 employees.

<u>Planeco - Website</u> <u>Planeco - YouTube</u> <u>Planeco - LinkedIn</u>

References

What are the main reasons of shading in PV systems?

What damage can occur

How losses can be minimized

How losses can be minimized

Installing additional modules, even if they are partially shaded, ...

... maximizes the energy production on a given roof/facade/area.

- ... shortens the energy payback time of the system.
- ... is cost-effective as it reduces the price per kWp and kWh.

Modules that are more resilient to partial shading could ...

... further minimize yield losses.

- ... maximize profitability (depending on the project and the module production costs).
- ... contribute significantly to operational safety of PV systems.

Solar Equipment

Shading Resilience of Shingle Matrix Modules

Nils Klasen, Philipp Zahn, Marco Saladin

12.12.2023 PV Magazine Webinar

Lead Questions for today's Webinar

- 1. What's the issue with *Partial Shading*?
- 2. Why are we convinced the *Shingle Matrix Interconnection* offers superior partial shading properties?
- 3. How can *Shading Resilience* be quantified?

Examples for Partial Shading

Small shaded areas already have a huge impact on power output!

[1] Contribution of AE Solar[2] Taken on my way to work[3] Taken during a hike

In two words: current mismatch

Shading of Solar Cells

• Reduction of irradiation \rightarrow Reduction of photocurrent $I_{\rm ph}$

■ Electrical serial interconnection → current conservation

$$I_1 \stackrel{!}{=} I_2 \stackrel{!}{=} \dots \stackrel{!}{=} I_n \quad \bigstar \text{ Kirchhoff law}$$

In two words: current mismatch

Shading of Solar Cells

• Reduction of irradiation \rightarrow Reduction of photocurrent $I_{\rm ph}$

current mismatch $\Delta I = 1 \text{ A}$

Electrical serial interconnection
 current conservation

$$I_1 \stackrel{!}{=} I_2 \stackrel{!}{=} \dots \stackrel{!}{=} I_n \quad \bigstar \text{ Kirchhoff law}$$

Counter measures for current mismatch

Bypass Diodes

 Difference in generated current bypasses the solar cell through the diode

Counter measures for current mismatch

Bypass Diodes

Difference in generated current bypasses the solar cell through the diode

Hamed Hanifi

Full Parallel Module Layout

- No current mismatch "possible"
- Challenge:
 - $V_{\text{module}} = V_{\text{cell}} \cong 0.65 \text{ V}$
 - $I_{\text{module}} = n \cdot I_{\text{cell}} \cong 600 \text{ A}$
- If just V_{cell} could be $\cong 30 \text{ V} \dots$

Counter measures for current mismatch

Bypass Diodes

 Difference in generated current bypasses the solar cell through the diode

Full Parallel Module Layout

- No current mismatch "possible"
- Challenge:
 - $V_{\text{module}} = V_{\text{cell}} \cong 0.65 \text{ V}$
 - $I_{\text{module}} = n \cdot I_{\text{cell}} \cong 600 \text{ A}$
- If just V_{cell} could be $\cong 30 \text{ V} \dots$

Shingle Matrix Interconnection

Shingle Interconnection Technology^[1]

- Remove: ribbons / wires / solder
- Add: overlapping solar cells / ECA

Requires special solar cell format

Shingle Matrix Interconnection

Shingle Interconnection Technology^[1]

- Remove: ribbons / wires / solder
- Add: overlapping solar cells / ECA

Requires special solar cell format

Shingle Matrix Layout

- Introducing: half-cut shingle solar cells
- Creation of masonry-like structure
- 1. Parallel interconnection of solar cells in one row
- 2. Serial interconnection of rows forming the panel

Current / voltage characteristics similar to standard
 PV modules

^[1] Donald C. Dickson Jr., US patent, S 2938938 A, 1960

Shingle Matrix Modules

A unique way of Solar Cell Interconnection

module

Half-cut solar cell module

Lateral Currents

 "Lateral currents", *I*_{lat}: perpendicular orientation to currents in normal operation

Lateral Currents

- "Lateral currents", *I*_{lat}: perpendicular orientation to currents in normal operation
- Currents may flow through busbar metallization to neighboring solar cells

Lateral Currents

- "Lateral currents", *I*_{lat}: perpendicular orientation to currents in normal operation
- Currents may flow through busbar metallization to neighboring solar cells
- Solar cells in a row behave like one large solar cell

A Shading Example

Shingle Matrix Module

shaded shingle cells

Half-cut Solar Cell Module

shaded half-cut cells

A Shading Example

Shingle Matrix Module

- 4 out of 5 solar cells per row operate as usual
- Lateral currents bypass the shade ^[1]
- Current reduction to $0.8 \cdot I_0$

Half-cut Solar Cell Module

- In each string there are two solar cells blocking the current
- Current drops to 0 in all strings

[1] Klasen et al., Lateral Currents in Shingle Solar Modules Detected by Magnetc Field Imaging, IEEE Journal of Photovoltaics, 2023

How to more universally quantify Shading Resilience?

Computation of Randomized Shading Scenarios

Tackle Diversity of Shading by Statistics ^[1,2,3]

- Monte Carlo Method approximation of a solution
 - Create (many) shading scenarios
 - Compute /-V-curve for different module layouts
 - Compare average results

rectangular shading

random shading

average irradiance (per solar cell) E

[3] 0.0 kW/m² 0.2 kW/m² 0.4 kW/m² 0.6 kW/m² 0.8 kW/m² 1.0 kW/m²

[1] Klasen et al., Performance of Shingled Solar Modules under Partial Shading, Progress in Photovoltaics, 2022 [2] Klasen et al., A Comprehensive Study of Module Lavouts for Silicon Solar Cells under Partial Shading, IEEE Journal of Photovoltaics, 2022. [3] Klasen et al., Quantitative Evaluation of the Shading Resilience of PV Modules, Proceedings of the 38th EUPVSEC, 2021

How to more universally quantify Shading Resilience?

Computation of Randomized Shading Scenarios

Tackle Diversity of Shading by Statistics ^[1,2,3]

- Monte Carlo Method approximation of a solution
 - Create (many) shading scenarios
 - Compute /-V-curve for different module layouts
 - Compare average results

Shading Resilience = average power^[1,2]

In this specific Study^[3]

- Evaluation of ~1200 scenarios
- Comparison of 4 module layouts
- Focus on current mismatch

rectangular shading

random shading

average irradiance (per solar cell) E

[3] 0.0 kW/m² 0.2 kW/m² 0.4 kW/m² 0.6 kW/m² 0.8 kW/m² 1.0 kW/m²

[1] Klasen et al., Performance of Shingled Solar Modules under Partial Shading, Progress in Photovoltaics, 2022 [2] Klasen et al., A Comprehensive Study of Module Layouts for Silicon Solar Cells under Partial Shading, IEEE Journal of Photovoltaics, 2022 [3] Klasen et al., Quantitative Evaluation of the Shading Resilience of PV Modules, Proceedings of the 38th EUPVSEC, 2021

Spot on V_{MPP}

Current Mismatch reveals itself in V_{MPP}

Current mismatch leads to MPPs with conductive bypass diodes → voltage drop by ~ 1/n, with n: number of bypass diodes

Simulation Study Spot on V_{MPP}

Current Mismatch reveals itself in V_{MPP}

- Current mismatch leads to MPPs with conductive bypass diodes → voltage drop by ~ 1/n, with n: number of bypass diodes
- 3 distinct groups in graphs correspond to 0, 1, 2 conductive bypass diodes in the MPP
 - absolute number of scenarios
 - + percentage of all evaluated scenarios

Results Shingle Matrix

Results Monte Carlo Simulation Study

Current Mismatch reveals itself in V_{MPP}

Spot on V_{MPP}

- Current mismatch leads to MPPs with conductive bypass diodes → voltage drop by ~ 1/n, with n: number of bypass diodes
- 3 distinct groups in graphs correspond to 0, 1, 2 conductive bypass diodes in the MPP
 - absolute number of scenarios
 + percentage of all evaluated scenarios

Cases without conductive bypass diode / %

Layout	Rectangular	Random
Shingle Matrix	22.0	32.3
Shingle String	14.5	23.0
120 cell half-cut	15.0	12.6
60 cell full square	6.2	4.2

[1] Klasen et al., Quantitative Evaluation of the Shading Resilience of PV Modules, Proceedings of the 38th EUPVSEC, 2021

Thank you for your attention! Contact us any time

Nils Klasen Technology Manager

nils.klasen@m10solar.com +49 761 7675 414

Philipp Zahn Managing Director

<u>philipp.zahn@m10solar.com</u> +49 761 7675 405

Marco Saladin Managing Director

MINIMIZING PARTIAL SHADING YIELD LOSSES SHADE-RESISTANT MODULES

Dr. Hamed Hanifi Head of Research and Development and Technical Sales

PV Magazine webinar December 2023

INTRODUCTION

An innovative company

- Customer-oriented company
- Tier-1 rated by Bloomberg NEF
- Present in 100+ countries

AESOLAR received PVEL trophy as TOP PERFORMER in reliability and performance of its modules AESOLAR celebrated its 20 YEARS anniversary

MOTIVATION

An overview on market segments

Two biggest PV markets in Europe

- - Germany is the biggest European PV market
 60% rooftop^[1]
 - Netherlands is the biggest market per capita
 Over 80% rooftop

Rooftop installations are one of the **major markets** which secures the distrbuted and renewable energy

Example of rooftop installation

MOTIVATION

Challenges of rooftop PV

PV modules are very sensitive to partial shading and lose power drastically

Bad news: You cannot avoid partial shading!

Climate and land specifications increase the probability of partial shading:
 Obstacles, snow , dirt, plants, etc

SHADING TEST

Samples and tests

Two modules with similar bill of materials are tested under partial shading conditions

Shade-resistant (HSF)

Standard

Partial shading test

Indoor test

Outdoor test

Shading scenarios

Measurement tool and setup

- Sun simulator at Fraunhofer CSP and Anhalt University of applied Sciences
- Measurement under STC

Shading scenarios

- Shading the center
- Shading the bottom row
- Shading the side row
- Shading one cell
- Shading three rows
- Shading diagonal

Shading the center

Right-side and one row

Right-side and three row

Shading one row

Shading one cell

Shading diagonal

Shading scenarios

Measurement tool and setup

- Sun simulator at Fraunhofer CSP and Anhalt University of applied Sciences
- Measurement under STC

Shading scenarios

- Shading one cell
- Shading the bottom row
- Shading diagonal

Indoor test

Outdoor test

Shading one row

Shading one cell

Shading diagonal

Shading of one solar cell

After shading of one cell

- Standard module: operates at 65%
- **HSF module**: operates at **97%**

35% Power loss

3% Power loss

HOT-SPOT FREE

Fraunhofer

Hanifi et al, Solar Energy, 2019

Shading of one row

After shading of one row

- Standard module: operates at 0%
- HSF module: operates at 80%

20% Power loss

Fraunhofer 🚔 AESOLAR CSP

Experiment setup

Mounting in outdoor test field

- AE shade-resistant (shaded, mono-facial)
- AE standard (shaded, mono-facial)
- Reference module (unshaded, mono-facial)

Shading

Wooden planks of 210 cm x 25 cm.

Measurement period

6 weeks between Oct. and Nov. 2022

Measurement tools

- All modules are connected to a SOL.Connect
 I-V tracer each.
- I-V curve, irradiance and backside temp. measurements are taken every 10 seconds.

Energy yield measurement setup at the Anhalt Photovoltaic Performance and Lifetime Laboratory (APOLLO) in Bernburg, Germany

Outdoor measurement

Evaluation of IV curves in real-life scenario shows a significant advantage of HSF module over equivalent standard module

Outdoor measurement

Gain in energy yield of +49% compared to AE Standard

Outdoor measurement

Difference in energy yield for different day types

Energy yield measurement setup at the Anhalt Photovoltaic Performance and Lifetime Laboratory (APOLLO) in Bernburg, Germany

RELIABILITY

Reliability of diodes under stress test

- a test to evaluate the durability of bypass diodes under partial shading conditions
- The device switches the bias every 60 seconds for 10,000 cycles → 25 years

Test setup with bias switcher and IR camera to monitor module temperature on each bias mode

16

Test results – IV and EL

RELIABILITY

The module is measured by flasher and electroluminescence before and after 10,000 cycles of stress test

EL of module P07 after 10.000 cycles

Economics

OUTLOOK Smart HSF module 2.0

🚔 AESOLAR

- HSF 1.0 is a successful product which is on the market since 2018
- An updated version under HSF 2.0 is on the way
 - First prototype was presented in Intersolar 2023
 - Half-cells replaced the full-size solar cells
 - Invisible bypass diodes
 - Less bypass diodes and better functionality

Comparison of a standard half-cell and shade-resistant half-cell design of AESOLAR under partial shading conditions

TAKEAWAY MESSAGE

- Project owners pay for efficiency and power [€/Wp] but they need energy [€/kWh]!
- Shade-resistant modules gives you more energy per area under shading conditions

Energy

NODN

ADE-RESI

- Flexible with shading direction
- Up to 80% more power under STC
- over 30% higher yield under shading conditions in winter

Durability

Smart HSF module has shown a good durability under stress testing and cycles equivalent to 25 years

HSF Shade-resistant module promisses a higher energy yield to achieve a lower LCOE under partial shading conditions

THANK YOU VERY MUCH FOR YOUR ATTENTION!

Contact:

Dr. Hamed Hanifi Head of Product Development and Technical Marketing

Email.: <u>h.hanifi@ae-solar.com</u> Tel: +49 8231 97 82 68-2

For sales inquieries contact: sales@ae-solar.com

The FoilMet Universe: Interconnection Using Welded Aluminum Foil

Jan Paschen pv magazine – webinars 12th December 2023 www.ise.fraunhofer.de

Working at Fraunhofer ISE

The largest solar research institute in Europe
 → We believe in Solar Energy

Working at Fraunhofer ISE

The largest solar research institute in Europe
 →We believe in Solar Energy

Group of Laser Process Technology

Laser: Cheap, Clean, Precise, Reliable
 →We believe in Lasers

Working at Fraunhofer ISE

The largest solar research institute in Europe
 →We believe in Solar Energy

Group of Laser Process Technology

Laser: Cheap, Clean, Precise, Reliable
 →We believe in Lasers

Team for Foil Metallization (FoilMet)

Aluminum foil: Abundant and recyclable, High conductive and affordable
 →We believe in laser welded Aluminum foil

Working at Fraunhofer ISE

The largest solar research institute in Europe
 →We believe in Solar Energy

Group of Laser Process Technology

Laser: Cheap, Clean, Precise, Reliable
 →We believe in Lasers

Team for Foil Metallization (FoilMet)

Aluminum foil: Abundant and recyclable, High conductive and affordable
 We believe in laser welded Aluminum foil

We develop solutions in PV via laser welded Aluminum foil

FoilMet Interconnect:

Interconnections of Shingled PV Strings Using Laser Welded Aluminum Foil

FoilMet Interconnect Shingling

Shingling of solar cells is ...

- an <u>edge interconnection of separated</u> solar cells...
- by <u>overlapping</u> adjacent cells...
- and joining them with a <u>conductive material</u>, e.g. solder or ECA

FoilMet Interconnect Shingling

Shingling of solar cells is ...

- an <u>edge interconnection</u> of <u>separated</u> solar cells...
- by <u>overlapping</u> adjacent cells...
- and joining them with a <u>conductive material</u>, e.g. solder or ECA
- ... or Aluminum foil

Step 1: Place 1st cell.

Step 1: Place 1st cell.

Step 2: Place 2nd cell.

Step 1: Place 1st cell.

Step 2: Place 2nd cell.

Step 3: Place Al-foil

Step 1: Place 1st cell.

Step 2: Place 2nd cell.

Step 3: Place Al-foil

Laser-weld Foil

AI-AI

Step 1: Place 1st cell.

Step 2: Place 2nd cell.

Step 3: Place Al-foil

- Laser-weld Foil
 - Al-Al
 - Al-Ag

Step 1: Place 1st cell.

Step 2: Place 2nd cell.

Step 3: Place Al-foil

- Laser-weld Foil
 - Al-Al
 - Al-Ag
 - Al-SiN_x

Step 1: Place 1st cell.

Step 2: Place 2nd cell.

Step 3: Place Al-foil

- Laser-weld Foil
 - Al-Al
 - Al-Ag
 - Al-SiN_x

Step 4: Flip top cell

Process of string sized stacks at once

- Potential for an acceleration of processing
- and reduction of cost

Process of string sized stacks at once

- Potential for an acceleration of processing
- and reduction of cost

Shingled and Gapless

Process of string sized stacks at once

- Potential for an acceleration of processing
- and reduction of cost

Shingled and Gapless

Project with the target of a pilot stringer

Process of string sized stacks at once

- Potential for an acceleration of processing
- and reduction of cost

Shingled and Gapless

Project with the target of a pilot stringer

Shading resilience

- Good cross conductivity
- Matrix shingling might be possible
- Aluminum foil accessible in string for bypass diodes
- ... but we will see

Eliminating the Need for Handling Individual Sub-Cells for Small Appliance PV Modules

What are small appliance PV modules for:

• Everything with a low current demand in the sun.

- Everything with a low current demand in the sun.
- IoT devices like street signs, parking meters, fence charger

- Everything with a low current demand in the sun.
- IoT devices like street signs, parking meters, fence charger

- Everything with a low current demand in the sun.
- IoT devices like street signs, parking meters, fence charger

- Everything with a low current demand in the sun.
- IoT devices like street signs, parking meters, fence charger
- ... trash can

What are small appliance PV modules for:

- Everything with a low current demand in the sun.
- IoT devices like street signs, parking meters, fence charger
- ... trash can

What are small appliance PV modules for:

- Everything with a low current demand in the sun.
- IoT devices like street signs, parking meters, fence charger
- ... trash can

- Small subcells
 - Poor edge to surface ratio

What are small appliance PV modules for:

- Everything with a low current demand in the sun.
- IoT devices like street signs, parking meters, fence charger
- ... trash can

- Small subcells
 - Poor edge to surface ratio
- "Threading through" cell connectors
 - High handling effort
 - Only two busbar

What are small appliance PV modules for:

- Everything with a low current demand in the sun.
- IoT devices like street signs, parking meters, fence charger
- ... trash can

- Small subcells
 - Poor edge to surface ratio
- "Threading through" cell connectors
 - High handling effort
 - Only two busbar
- Soldering
 - Lead loaded
 - Silver pads/busbar necessary

What are small appliance PV modules for:

- Everything with a low current demand in the sun.
- IoT devices like street signs, parking meters, fence charger
- … trash can

How are they designed:

- Small subcells
 - Poor edge to surface ratio
- "Threading through" cell connectors
 - High handling effort
 - Only two busbar
- Soldering
 - Lead loaded
 - Silver pads/busbar necessary

FoilMet HV provides a solution for these problems

What is FoilMet HV

FoilMet HV:

- No handling of small sub cells
 - Interconnect first, then separate \rightarrow Handling only at host cell level

What is FoilMet HV

FoilMet HV:

- No handling of small sub cells
 - Interconnect first, then separate \rightarrow Handling only at host cell level
- No "threading through" cell connectors
 - Interconnection of back contact solar cells

What is FoilMet HV

FoilMet HV:

- No handling of small sub cells
 - Interconnect first, then separate \rightarrow Handling only at host cell level
- No "threading through" cell connectors
 - Interconnection of back contact solar cells
- No soldering
 - Laser welded aluminum foil
 - Directly to fingers → no pad/busbar
 - No lead, no soldering fluxes, no adhesives, no inert gas
 - ightarrow only light and aluminum

Back Contact Solar Cell

- Metal Wrap Through (MWT)
- → TopCon IBC

Back Contact Solar Cell

- Metal Wrap Through (MWT)
- → TopCon IBC

Process

Place Aluminum foil

Back Contact Solar Cell

- Metal Wrap Through (MWT)
- → TopCon IBC

- Place Aluminum foil
- Laser weld to both electrodes

Back Contact Solar Cell

- Metal Wrap Through (MWT)
- → TopCon IBC

- Place Aluminum foil
- Laser weld to both electrodes
- Separate sub-cells via TLS

Back Contact Solar Cell

- Metal Wrap Through (MWT)
- → TopCon IBC

- Place Aluminum foil
- Laser weld to both electrodes
- Separate sub-cells via TLS

Back Contact Solar Cell

- Metal Wrap Through (MWT)
- → TopCon IBC

- Place Aluminum foil
- Laser weld to both electrodes
- Separate sub-cells via TLS

Back Contact Solar Cell

- Metal Wrap Through (MWT)
- \rightarrow TopCon IBC

- Place Aluminum foil
- Laser weld to both electrodes
- Separate sub-cells via TLS
- Change of direction

IV-Measurement

ld	$I_{ m SC}/{ m mA}$	$V_{\rm OC}/V$	$I_{ m MPP}/ m mA$	$V_{\rm MPP}/{\sf V}$	FF/%	$P_{\rm MPP}/{\sf W}$	η /%
1	273.7	24.41	233.0	19.69	68.7	4.59	17.90
2	274.4	24.37	235.2	19.72	69.4	4.64	18.02

IV-Measurement

ld	$I_{ m SC}/{ m mA}$	$V_{\rm OC}/V$	$I_{ m MPP}/{ m mA}$	$V_{\rm MPP}/{\sf V}$	FF/%	$P_{\rm MPP}/{\sf W}$	$\eta/\%$
1	273.7	24.41	233.0	19.69	68.7	4.59	17.90
2	274.4	24.37	235.2	19.72	69.4	4.64	18.02

No handling of small sub cells

- Interconnect first, then separate \rightarrow Handling only at host cell level
- Square sub cells

IV-Measurement

ld	$I_{ m SC}/{ m mA}$	$V_{\rm OC}/V$	$I_{ m MPP}/{ m mA}$	$V_{\rm MPP}/{\sf V}$	FF/%	$P_{\rm MPP}/{\sf W}$	$\eta/\%$
1	273.7	24.41	233.0	19.69	68.7	4.59	17.90
2	274.4	24.37	235.2	19.72	69.4	4.64	18.02

No handling of small sub cells

- Interconnect first, then separate \rightarrow Handling only at host cell level
- Square sub cells
- No "threading through" cell connectors
 - Interconnection of back contact solar cells as IBC or MWT

IV-Measurement

ld	$I_{ m SC}/{ m mA}$	$V_{\rm OC}/V$	$I_{ m MPP}/ m mA$	$V_{\rm MPP}/{\sf V}$	FF/%	$P_{\rm MPP}/{\sf W}$	η /%
1	273.7	24.41	233.0	19.69	68.7	4.59	17.90
2	274.4	24.37	235.2	19.72	69.4	4.64	18.02

No handling of small sub cells

- Interconnect first, then separate \rightarrow Handling only at host cell level
- Square sub cells
- No "threading through" cell connectors
 - Interconnection of back contact solar cells as IBC or MWT
- No soldering
 - Laser welded aluminum foil
 - ightarrow only light and aluminum

All Cells in series

1x36 sub-cells

All Cells in series

1x36 sub-cells

2 parallel strings

2x18 sub-cells

All Cells in series

1x36 sub-cells

2 parallel strings

2x18 sub-cells

All Cells in series

1x36 sub-cells

2 parallel strings

2x18 sub-cells

3 parallel strings

FoilMet High Voltage Shading

All Cells in series

1x36 sub-cells

2 parallel strings

2x18 sub-cells

3 parallel strings

3x12 sub-cells

FoilMet High Voltage Shading

All Cells in series

1x36 sub-cells

2 parallel strings

2x18 sub-cells

3 parallel strings

3x12 sub-cells

Thank you for your attention

Contact

Jan Paschen Business Unit: Laser System Developmen Department: Photovoltaics Tel. +49 12 3456-5055 jan.paschen@ise.fraunhofer.de

Fraunhofer ISE Heidenhofstrasse 2 79110 Freiburg Germany <u>www.ise.fraunhofer.de</u> Fraunhofer ISE

this Webinar is M10 Solar Equipment

12 December 2023 4:00 pm – 5:00 pm | CET, Berlin 10:00 am – 11:00 am | EST, New York City

Mark Hutchins Editor pv magazine

pv magazine Webinars

Minimizing partial shading yield losses Q&A

Christian Carpaij Division Manager Engineering Planeco

Hamed Hanifi

Head of Research and Development **AE Solar**

Nils Klasen

Technology & Sales Manager M10 Solar Equipment

Jan Paschen

Scientific Researcher Photovoltaics Division **Fraunhofer ISE**

Most-

read

online!

The latest news | print & online

with

New air-to-water heat pumps from Italy

by Emiliano Bellini

SUNRISE ARABIA

CLEAN ENERGY CONFERENCE

Date January 31, 2024

Place Riyadh, Saudi Arabia

REGISTER NOW

سولارابیك pv magazine group solar*а*віс

Organized by: pv m

Coming up next...

Wednesday, 13 December 2023 11:00 am – 12:00 pm EST, New York City 5:00 pm – 6:00 pm CET,, Berlin, Madrid, Paris **Monday, 18 December 2023** 10:00 am – 11:00 am BRT, São Paulo 2:00 pm – 3:00 pm CET, Berlin Many more to come!

Achieving domestic content tax incentives with solar trackers The value of standard module formats in the n-type era In the next weeks, we will continuously add further webinars with innovative partners and the latest topics.

Check out our pv magazine Webinar program at:

www.pv-magazine.com/webinars

Registration, downloads & recordings are also be found there.

this Webinar is M10 Solar Equipment

Mark Hutchins Editor pv magazine

Thank you for joining today!