this Webinar is Valmont Solar

Thursday, 18 January 2024

2:00 pm - 3:00 pm | GMT, London 3:00 pm - 4:00 pm | CET, Berlin 4:00 pm - 5:00 pm | EET, Athens

Marian Willuhn Editor pv magazine

Agri-PV: Let's talk about technology, finance and regulation

Marco Martini Environmental Engineer Enel Green Power

Oltis Dallto Agrivoltaic Manager JUWI Italy

pv magazine Webinars

Welcome!

Do you have any questions? ?
Send them in via the Q&A tab.
We aim to answer as many as we can today!
You can also let us know of any tech problems there.

We are recording this webinar today. **Solution** We'll let you know by email where to find it and the slide deck, so you can re-watch it at your convenience.

valmont V SOLAR

Agri-PV Let's talk about technology, finance and regulation

Eng. Chiara Tarisciotti Regional Engineering Manager for EMEA

valmont 🏹 SOLAR

Research & Development

Products 2 Valmont Solar Agri-PV

Solutions

Background

Valmont & Convert

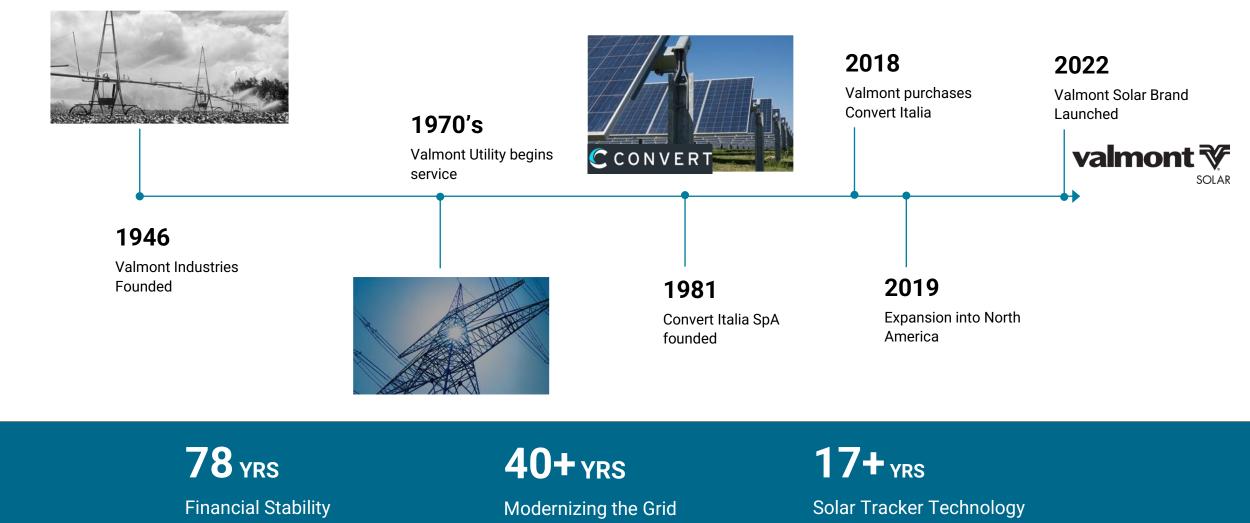
Agri-PV V2.1 Research & Development

1

3

About Us

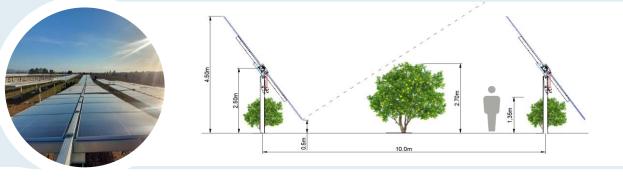
A Stable Partner for 78 Years. Our commitment to sustainability by conserving resources and improving life requires financial sustainability, as well.



Valmont is publicly traded on the NYSE under the symbol (VMI).

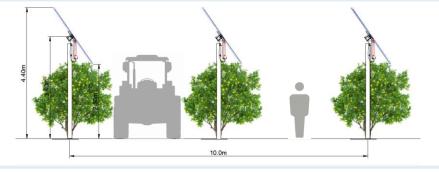
\$4.3bn 100+ 27 **ANNUAL REVENUE COUNTRIES WHERE WE** DISTINCT VALMONT BRANDS **DO BUSINESS IN** \$200M 84 11,000 **EMPLOYEES** MANUFACTURING **BONDING CAPACITY** WORLDWIDE (AGGREGATE) **FACILITIES WORLDWIDE**

Valmont Solar Agri-PV Products



Convert-1P Tracker AGRI-PV STANDARD

*


Convert-2P Tracker AGRI-PV STANDARD

Elevated Tracker for Agricultural Applications AGRI-PV ADVANCED

Agri-PV v2.1 & v4.0

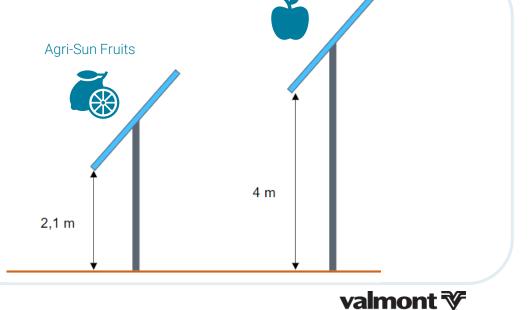
AGRI-PV STANDARD

Convert-1P and Convert-2P Tracker [*Low***]** Vegetable crops or livestock characterized by limited vertical development

- Minimum height ≈ 0.4 m
- Crop row spacing ≈ 5.0 m

AGRI-PV ADVANCED

Agri-PV v2.1 [Medium]


"Classic" configuration: three-dimensional fruit tree growth

- Minimum height \approx 2.1 m
- Crop row spacing ≈ 5.0 m

Agri-PV v4.0 [High]

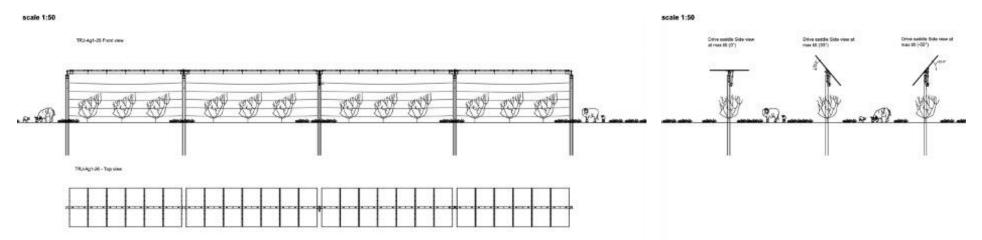
"Guyot" system and vineyards: two-dimensional fruit tree growth

- Minimum height \approx 4.0 m
- Crop row spacing ≈ 2.5 m

SOI A

Agri-Sun Apples

Product: Agri-PV v2.1


SCALEA PROTOTYPE:

The first Valmont Solar approach to agrivoltaic experimentation

PILOT PROJECTS IN FRANCE & ITALY:

A recent example of Valmont Solar Agri-PV v2.1

Agri-PV v2.1 | R&D – Weathering Steel

A product supported by the results of European Research Project GOPV [H2020]

Weathering Steel (Corten): Low visual impact & low cost of galvanizing

Product: Agri-PV v4.0

Product under development in the contest of Symbiosyst Project [Horizon].

"Create a Symbiosys where PV an agriculture can have a mutually beneficial relationship"

🐝 Symbiosyst

Demo 1

Laimburg, Bolzano

Growth of fruit trees (apples, pears, citrons, lemons) in "traditional" and "Guyot" configuration

Minimum height of module > 3.5 m

Demo 2

flowers characterized by a limited vertical development

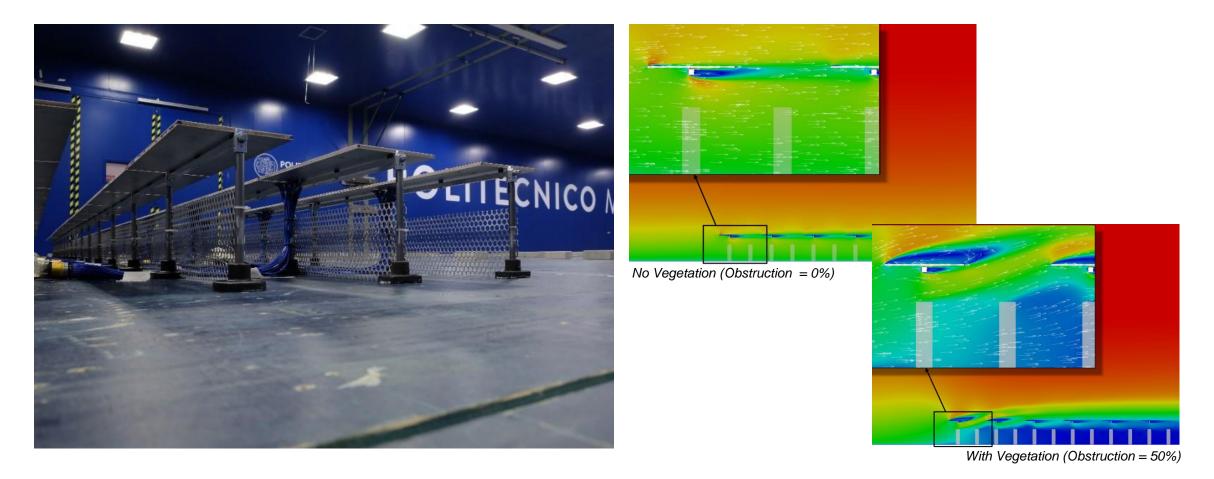
Production of vegetables, horticultural crops,

Minimum height of module > 2.1 m

Agrivoltopolis, Barcellona

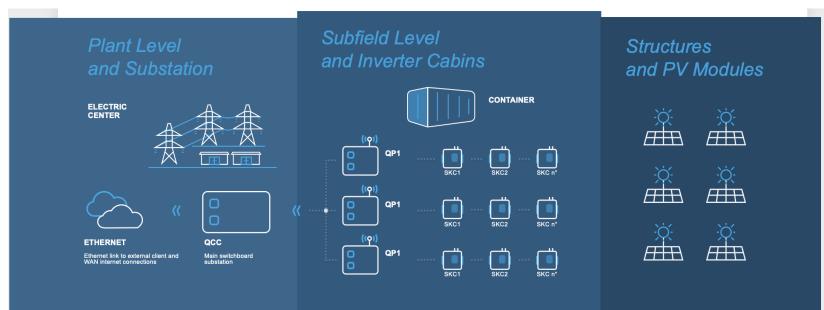
Agri-PV v4.0 | R&D - Wind Tunnel

Politecnico di Milano Wind Tunnel
 2.793 follower
 9m •


Photovoltaic (PV) systems with tracking mechanisms are steel structures that benefit from wind tunnel tests in order to reach an optimal aerodynamic design. A new frontier is the application of PV trackers in agriculture, and we are pleased to contribute to the research in this field. We tested in our wind tunnel the new Convert Agri-PV tracker by Valmont Solar also considering the aerodynamic interaction with the crops. Part of the work is carried in the framework of the Horizon Europe SYMBIOSYST project.

+ Segui

Agri-PV v4.0 | R&D - CFD


To substantiate our wind tunnel test findings, we previously conducted Computational Fluid Dynamics (CFD) simulations, assessing the impact of the presence of crops beneath the trackers

Agri-PV v4.0 | R&D – Control System

SCADA - INTEGRATION

- New sensors for agriculture integration: temperature, humidity, plant growth, etc.
- Wired or wireless communication
- Protection from adverse weather events

POWERED BY CONVERT TECHNOLOGY C

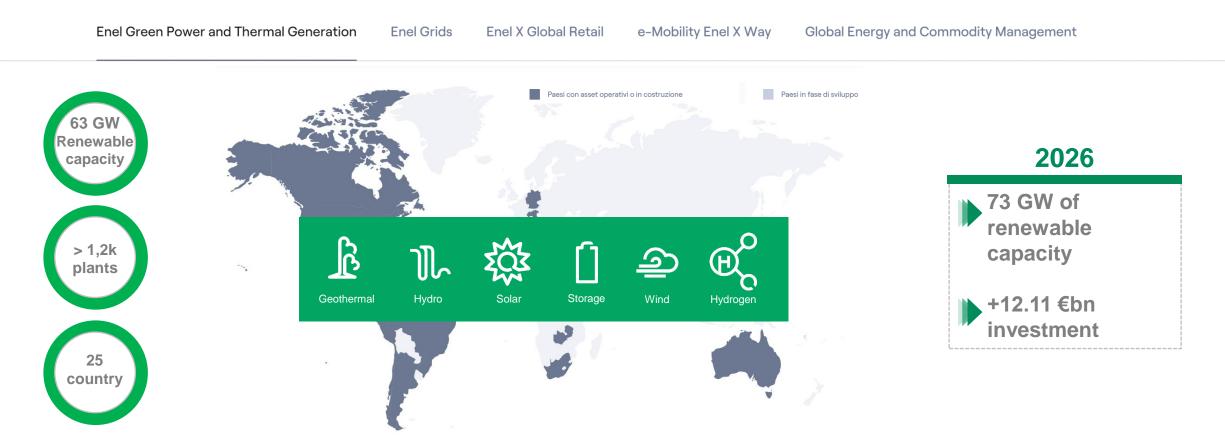
Thank You

Eng. Chiara Tarisciotti Regional Engineering Manager for EMEA

Agri-PV: Let's talk about technology, finance and regulation

Harvesting the future - the sustainable intersection of Agriculture and Solar Power

Ing. Marco Martini Environment, Archaeology and Biodiversity (EAB) Enel Green Power – Rome

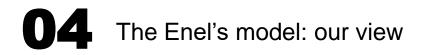

January 18, 2024

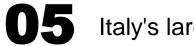
Enel Green Power

Company presentation

Focus on the entire value chain...

(Development, Engineering, Construction, Operation and Maintenance, End-of-life Management)


Agenda



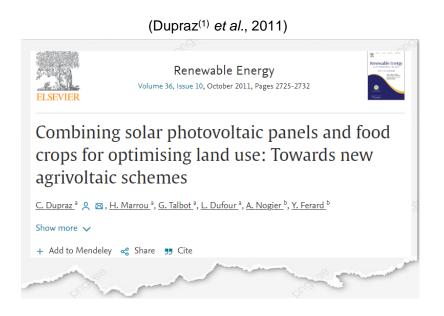
01 Introduction

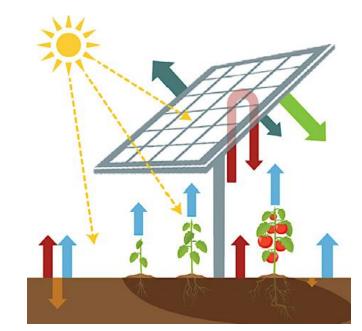
02	Agrivoltaics Overview: installations
UL	and future trends

03 Regulatory Framework: from EU strategy to local legislation

Italy's largest agrivoltaic plant

Introduction


Definition and the origin of the term



pv magaz

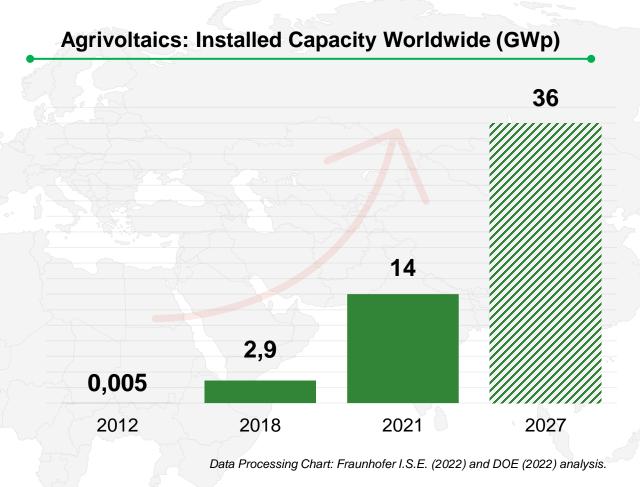
Agrivoltaic / Agri-PV

[...] Solar plants using PV panels will therefore compete with agriculture for land. In this paper, we suggest that a combination of solar panels and food crops on the same land unit may maximise the land use. We suggest to call this an **agrivoltaic system** [...]

(1) Christian Dupraz - French National Institute for Agriculture, Food, and Environment (INRAE) | INRAE - Centre de Recherche de Montpellier

(2) Even though some attribute the origin of the term "agrivoltaic" to 1982, with the studies of Adolf Goetzberger, founder of the Fraunhofer Institute for Solar Energy Systems ISE.

Copyright © 2021 Enel S.p.A. All rights reserved.


Agrivoltaics Overview

Installations and future trends

pv magazine

- Agrivoltaic installations began in 2004 in Japan, exploring coexistence of agriculture and photovoltaic production. In 2013 Japan initiated the first agrivoltaic support
 program, followed by China, South Korea, France, and Germany.
- Global installed capacity was 5 MWp in 2012, rising to 2.9 GWp in 2018, and reaching 14 GWp by the end of the decade, with China contributing 12 GWp.
- The first large-scale agrivoltaic system, covering 10 hectares, was established in 2015.

Regulatory framework

From EU strategy to local legislation

At the international level, in September 2015, the UN adopted **Agenda 2030**, a sustainability plan that includes the development of agrophotovoltaic plants for renewable energy among its **17 action items**.

To support agrophotovoltaics, the European Commission plans initiatives within the European Biodiversity Strategy, aiming to accelerate the transition to a new sustainable food system

SHARING ADAPTATION INFORMATION ACROSS EUROPE

pv magazine

EU - ADAPT

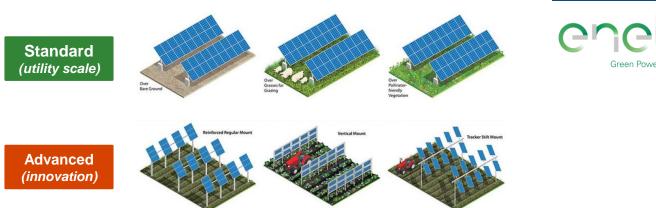
The Commission has proposed integrating agriphotovoltaics into the upcoming **Climate Change Adaptation Strategy**, with various proposals aligning it with European energy transition agendas.

Support for agrivoltaics through renewable energy tendering. Definition of the agrivoltaic system since 2017. In 2020, new contracts were awarded for an additional agrivoltaic capacity of 80 MW.

Research activities at the Fraunhofer Institute for Solar Energy Systems ISE. Support for Agrisolar through innovation-focused tendering. Introduction of the first technical standard for agrivoltaic systems, DIN SPEC 91434:2021-05.

The PNRR allocates over 3 billion euros for Agrivoltaics. MiTE guidelines with requirements are introduced, along with the launch of the Sustainable Agrivoltaic Network.

pv magazine


The Enel's model

Our view

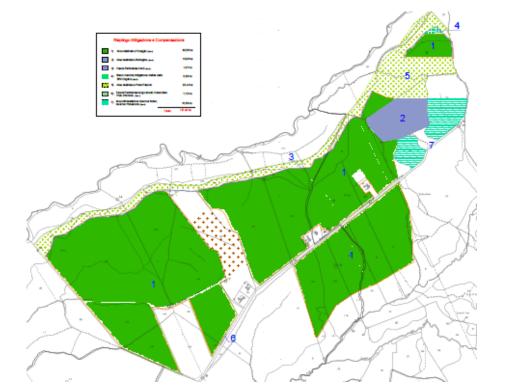
Agrivoltaics model: applicable for solar developers

Optimization of the spacing of PV panels and utilizing available site space for integrated agriculture aims to maintain agricultural functionality while improving overall site quality.

The careful selection of crops and the correct planning of restoration measures, coupled with interventions during solar farm construction such as revegetation and visual impact mitigation, guarantee a **sustainable coexistence**, fostering both agricultural benefits and a sustainable model.

EnvironmentSolar developer• Reduction of land occupancy• Control of noxious invasive seeds• Soil erosion control• Reduction of regular mowing• Restoration of soil quality and fertility• Reduction of stormwater management costs• Reduction of water consumption• Reduction of PV modules cleaning events	 Local community Job creation by partnering with local farmers Increase of yield for farmers (plants under heat-stress)
occupancyinvasive seeds• Soil erosion control• Reduction of regular mowing• Restoration of soil quality and fertility• Reduction of stormwater management costs• Reduction of water consumption• Reduction of PV modules	with local farmersIncrease of yield for farmers (plants under
 Habitat and food for insects, birds, small mammals Increase of the landscape diversification Increase of Pollinators 	 Integration with livestock farming Honey production Potential for Innovation applications (high-tech agriculture, monitoring sensors) Cooperation agreement, University NGO,

pv magazine


Sustainable integration between agriculture and photovoltaic system

Italy's largest agrivoltaic plant

Tarquinia Solar Plant

It will be built on land belonging to a local company that will collaborate with Enel Green Power to integrate the plant with agricultural activities: in particular, **fodder and borage** will be grown in the vacant areas between the rows of panels and the overhead power line buffer strips, while **olive trees** will be planted in the perimeter strips.

pv magazine

Green Powe

Solar Flax Harvest in Spain

Las Corchas Solar Plant

pv magazine

The three-hectare solar field in Carmona, Seville, now not only hosts innovative projects but marks a milestone—the inaugural solar flax harvest.

pv magazine

...and not only agricolture

Grass Management by the Sheep grazing $\begin{subarray}{c} \end{subarray}$

more than 19 projects

where the activity is taking place in the last 5 years

The coexistence of agriculture (livestock farming) and photovoltaics offers **several benefits**, both to local communities (establishing good relationships with farmers) and livestock (microclimate improvment, panel as shelter) and in terms of reduced OPEX costs and fire risk

Thanks for your attention

Ing. Martini Marco

Environmental Engineer ITA&RoE Engineering & Construction Enel Green Power S.p.A

Email: marco.martini@enel.com

pv magazine Webinar Agri-PV: Let's talk about technology, finance and **regulation**

January 18, 2024

Agenda Agri PV presentation

	Торіс
1	About JUWI
2	Agri-PV in JUWI
3	Market Update Italy
4	Agri-PV integration scheme
5	Case study Italy

A strong group

As an MVV company, we are part of one of Germany's leading energy groups

employees throughout the world

18 offices in 11 countries throughout the world

8.2 million tonnes of CO₂ saved per year

100 percent subsidiary of MVV Energie AG

6,550 employees throughout the world

355 million euros investment volume

4.2 billion euros of sales FY 2021

2040

climate-positive with the Mannheim model

Our Track Record

Facts and figures

Solar power

- > 2,000 systems, free-standing and roofmounted
- approx. 5.3 billion kWh annual output
- approx. 3,850 MW total capacity

Wind power

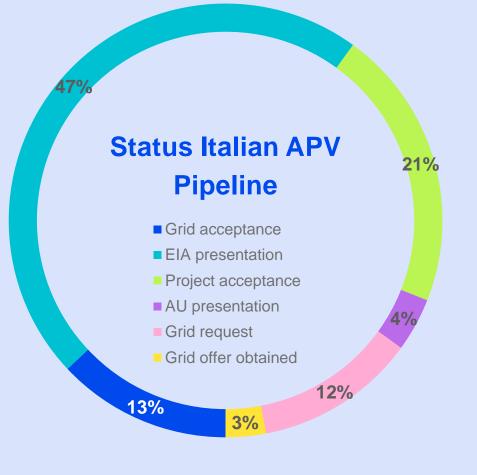
- > 1,250 wind turbines at about 200 locations
- approx. 6.1 billion kWh annual output
- approx. 3,000 MW total capacity

Hybrid

- 20 projects
- approx. 130 MW solar
- approx. 35 MW wind
- approx. 170 MW total capacity

Agri-PV in JUWI With the best of both worlds

Italy

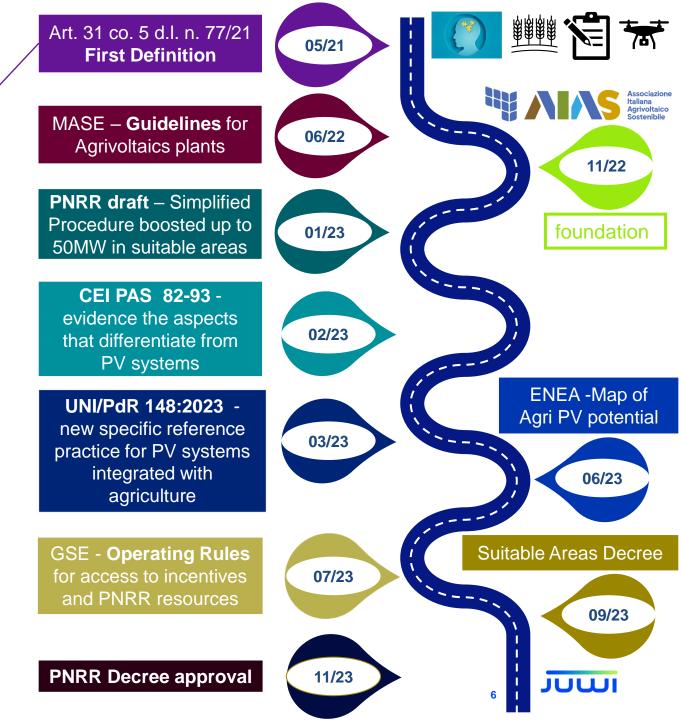

Italy is our focus market for Agri-PV with a substantial project pipeline of > 250 MW under development

Germany

General conditions are less favorable, we are evaluating first pilot and test projects to optimize future applications

Global

Monitoring of JUWI markets with positive outlooks in Japan and South Africa.



Agri PV Italy Market Update Italy

Policy

- Art. 65 co. 1- quarter and quinquies d.l. n. 1/12
 - APV systems are eligible for public funding
- PNRR (recovery and resilience plan)
 - € 1.1 billion allocated for the implementation of APV (up to 40% of eligible investment costs).
 - incentive electricity tariffs (estimated budget of € 560 million) paid during the operational phase of the projects (20 years).
 - 1.04 GW of agrivoltaic systems installations expected by 30 June 2026.
 - The text has been **approved** in Strasburg in November 23.
- «D.L. Energia» n. 17/22: Agri PV up to 20MW
 - simplified authorization process (PAS)
 - No environmental procedure (VIA) in suitable areas

- ** Methods for estimating agricultural production introduced by CEI (Annex A) and calculation defined by UNI/PdR 148:2023 (annex B)
- *** Calculation and input defined by CEI and UNI

**** no clear definition of estimating methods or calculation (reference to DM 31/07/2015 of Ministry of Agricultural and Food Policies Forestry)

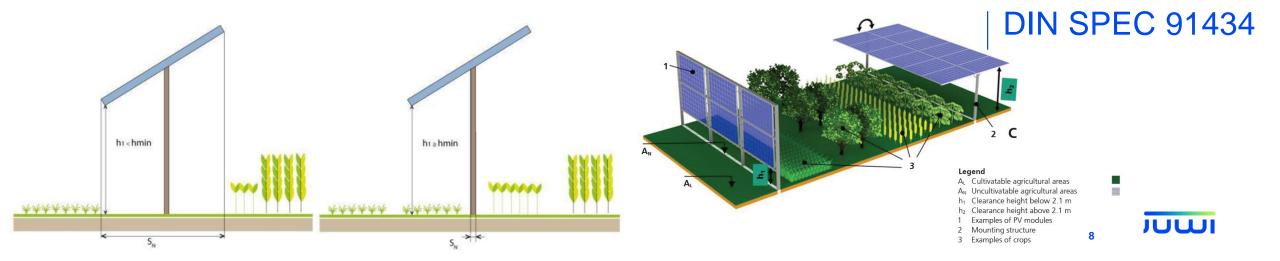
The Italian APV guidelines

Legislation complexity

CEI PAS 82-93

- safety requirements
- **Sn** not agricultural area
- Many aspects to be defined in a future edition

COMITATO ELETTROTECNICO ITALIANO


UNI/PdR 148:2023

- Characteristics for integration with agriculture and the landscape (Annex C)
- Integration of agricultural activities with the management of APV plants
- Impacts on the territory, on the community (Annex D) and the responsible actors
- Technical requirements: the agricultural yield (Ra) and the Land Equivalent Ratio (LER).
- The Monitoring of APV systems and recommendations (Annex B)

The APV integration scheme Agri – PV Project management

- Crop Science Investigation
- Conclusions for initial APV design

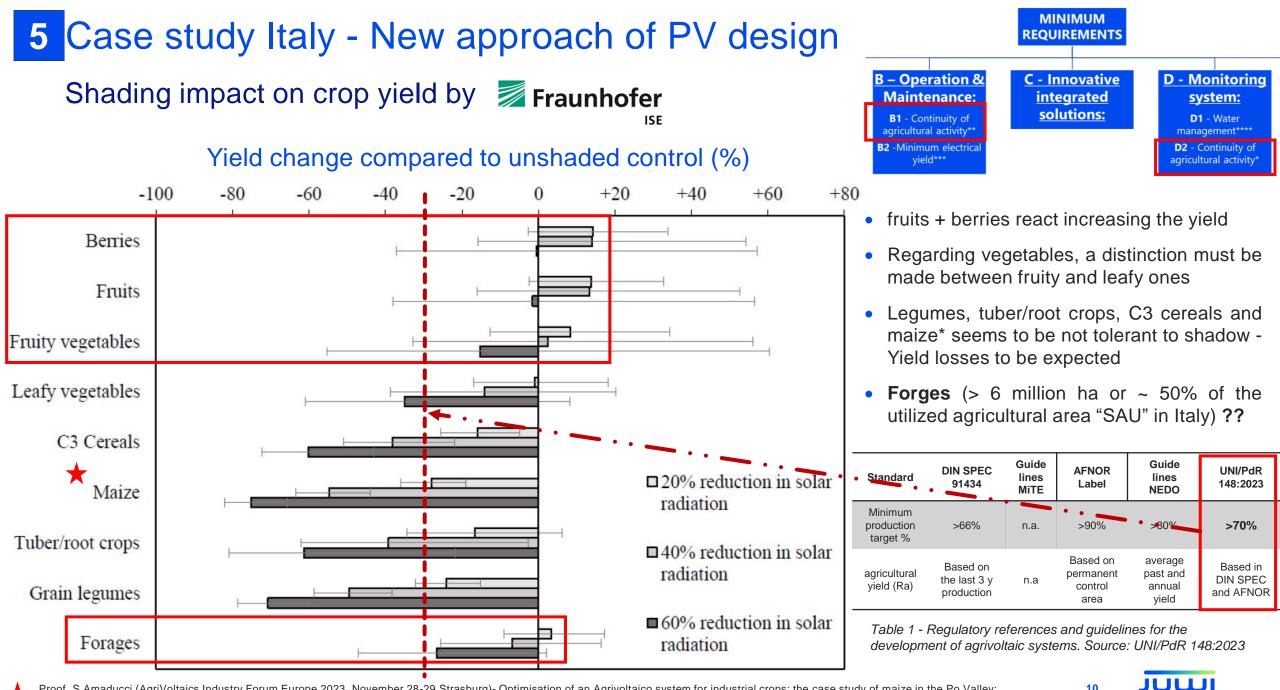
Start Authorization

 Identify Investor, enter EPC and O&M contract

Finance & Sales

 evaluate impact from agricultural activities and herbicides/fertilizers

Origination


- Check agricultural activities (abandoned vs. Operational)
- Classification Base vs Advanced APV

- Planning and Purchasing
- Ensuring the continuation of
 agricultural activities for at least 30
 years
- Risk reduction for bankability (warranties, insurance, H&S...)

Construction and OP&M

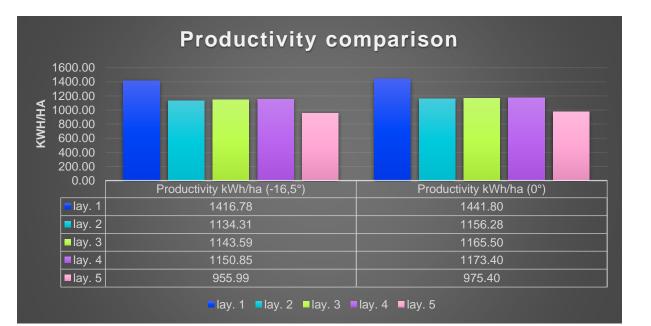
Coordination with agricultural activities

Proof. S.Amaducci (AgriVoltaics Industry Forum Europe 2023, November 28-29 Strasburg)- Optimisation of an Agrivoltaico system for industrial crops: the case study of maize in the Po Valley: In Italy maize behaves as a shade tolerant crop.

5 Case study Italy - New approach of PV design

Light simulation in different configurations by **Fraunhofer** ISE

lay. 1	lay. 2	lay. 3	lay. 4	lay. 5	lay. 1 lay. 2 lay. 3 lay. 4				lay. 5
	azimuth (°)				azimuth (°)				
		-16.5					0		
		pitch (m)					pitch (m)		
11		14		17	11		14		17
		height (m)					height (m)		
3	2.5	3	3.5	3	3	2.5	3	3.5	3


pitch (m)	11	14			17
height (m)	3	2.5	3	3.5	3
delta kWh/ha	25.01	21.98	21.91	22.55	19.40
%	1.77%	1.94%	1.92%	1.96%	2.03%


from 575W module in the designing phase to 610W in the construction phase (+5,7%). \uparrow pitch or \downarrow n° of panels

5 Case study Italy – Light simulation and results by **Fraunhofer**

Yield change compared to different configurations

Productivity \downarrow when the pithch \uparrow ;

Energy

Productivity \uparrow when the height \uparrow (rear side);

Productivity Azimuth (0°) > azimuth $(-16,5^\circ)$;

The loss of productivity should be calculated in terms of economic values and compared with the «gain» of the agricultural yield;

RSR

RSR in both azimuth configuration is comparable;

Different RSR are to be considered in relation with the shadow tolerance, (previous slide);

The actual agricultural activities and their continuity should be considered in order to choose the optimum layout.

JUUI

Thank You

Oltis Dallto Agri PV Manager - JUWI Group Via Sommacampagna, 59/D Verona VR, Italy www.juwi.com agri-pv@juwi.com · T. +39 045 862 63 55 oltis.dallto@juwi.it · M +39 329 744 6518 Digital catalogue presentation

this **Webinar** is Valmont Solar

Thursday, 18 January 2024

2:00 pm - 3:00 pm	GMT, Londor
3:00 pm – 4:00 pm	CET, Berlin
4:00 pm – 5:00 pm	EET, Athens

Marian Willuhn Editor pv magazine

Agri-PV: Let's talk about technology, finance and regulation Q&A

Marco Martini Environmental Engineer Enel Green Power

Oltis Dallto Agrivoltaic Manager JUWI Italy

Most-

read

online!

The latest news | print & online

with

New solid state battery charges in minutes, lasts for thousands of cycles

by Marija Maisch

Bosch unveils cold climate heat pump for residential applications

by Emiliano Bellini

Coming up next...

Wednesday, 24 January 2024 10:00 am – 11:00 am GMT, London 11:00 – 12:00 pm CET, Berlin **Thursday, 25 January 2024** 2:00 pm – 3:00 pm GMT, London 3:00 pm – 4:00 pm CET, Berlin Many more to come!

Inverters: Exploring solutions for European C&I projects

N-type trends in 2024

In the next weeks, we will continuously add further webinars with innovative partners and the latest topics.

Check out our pv magazine Webinar program at:

www.pv-magazine.com/webinars

Registration, downloads & recordings are also be found there.

this Webinar is powered by Valmont Solar

Marian Willuhn Editor pv magazine

Thank you for joining today!