this Webinar^{is} JA Solar

25 January 2024

2:00 pm – 3:00 pm	GMT, London
3:00 pm – 4:00 pm	CET, Berlin
4:00 pm – 5:00 pm	EET, Athen

Mark Hutchins Magazine Director pv magazine

N-type trends in 2024

Lida Guo Senior Product Strategy Manager JA Solar

Yixiao Zhang Technical Engineer TÜV Nord

Welcome!

Do you have any questions?
Send them in via the Q&A tab.
We aim to answer as many as we can today!
You can also let us know of any tech problems there.

We are recording this webinar today. Let We'll let you know by email where to find it and the slide deck, so you can re-watch it at your convenience.

Never Stop Evolution

Empowering Tomorrow:

Unveiling Advanced Solar Technology

Presenter: Lida Guo

Date: 25 January 2024

PV Technologies and Development Trend

Contents

New-generation N-type Products by JA Solar

Performance Analysis of DeepBlue 4.0 Pro

DEEP BLUE 4.0

PV Technologies and

Development Trend

Module Power Trend

JA SOLAR

182 → 182* (182+x) Module area: $1m^2 \rightarrow 1.5+m^2 \rightarrow 2.5+m^2$

Development of High-efficiency Cell Technologies

Development Roadmap of Solar Cell Technology

 BSF
 PERC

 BSF
 PERC

 2012 mass production
 2012 mass production

 2015-present mainstream
 2022

- PERC efficiency in mass production ~ 24%, limited space for further efficiency improvement and cost reduction.
- After PERC, the new technology still needs to have mass production characteristics, including high efficiency, low cost, good product yield and so on.
- TOPCon is this kind of technology, so it will gradually become the mainstream technology in the market.

Photovoltaic Conversion Efficiency of Batteries

Future

Time

High-density Encapsulation

JASOLAR

Considering the power improvement, product yield, reliability and other factors, small spacing gradually become the mainstream of high-density encapsulation technology.

LCOE is the Core for Best Performance Modules

JASOLAR

Module cost (price)

The lower the module cost the lower the initial cost

Module efficiency (power)

High efficiency (power) modules can reduce system BOS (Balance of System) costs

Power generation performance of modules

Modules with excellent power generation performance can increase electricity generation and reduce LCOE

Long-term reliability of modules

High reliability ensures stable power generation throughout the entire life cycle

Optimal LCOE (core) considering 4 aspects above Optimal Solution

DEEP BLUE 4.0

New-generation N-type

Products by JA Solar

DeepBlue 4.0 Pro

JASOLAR

JA SOLAR

The new-generation **182mm*199mm** rectangular wafers showing stronger industry chain and industry inclusiveness

The new-generation **182mm*199mm** rectangular wafers showing stronger industry chain and industry inclusiveness

JASOLAR

Introduced in 2021, the **2465mm*1134mm** dimension has become an important product specification in the industry, widely applied and market-tested across various scenarios.

With higher power, better reliability and lower BOS cost, JA Solar's JAM72D42 module is currently the best module solution among all 182 series products.

Design Concept of DeepBlue 4.0 Pro — Offshore PV Solution

JASOLAR

High-efficiency Bycium+ Cell Technology

Front surface SMBB + LECO

Laser-enhanced contact optimization (LECO)

Front surface passivation

FSP (J_{0 Front}<8 fA/cm²)

Selective emitter

N-type substrate

N-type low-oxygen silicon wafer (11 ppma) Millisecond-class minority carrier lifetime

RSP + passivated contact

Rear surface recombination ($J_{0 \text{ Rear}} < 2 \text{ fA/cm}^2$)

Rear surface SMBB

Double-side ARC + ultra-fine busbars

Voc

Advanced Module Technology

High-power and high-performance modules — rectangular wafers + SMBB + high-density encapsulation + highly reliable encapsulation materials

Excellent Reliability

Deep Blue 4.0 pro performs exceptionally well in various rigorous tests according to the IEC testing standards

Excellent Reliability

JASOLAR

Capable of withstanding repeated exposure to salty atmospheres, immersion in seawater and temperature changes caused by seawater splashing on modules in sunlight.

ASTM E1597 Standard Test

* Demonstrating the ability of PV modules to withstand repeated immersion or splash exposure by seawater as might be encountered when installed in a marine environment, such as a floating aid-to-navigation.

Saltwater Pressure Immersion and Temperature Testing Only 0.322% power degradation

The test simulates immersion of modules in sealed containers at 45°C and 5°C, applying a pressure of 35 kPa, under specific seawater concentration (density 1.025 + 0.005 g/L) at 15°C. A total of 500 thermal cycles were conducted

DEEP BLUE 4.0

Performance Analysis

of DeepBlue 4.0 Pro

Power Generation Performance

JASOLAR

Lower power degradation

First year power degradation $\leq 1\%$, annual power degradation rate $\leq 0.4\%$, 30-year life cycle, and power generation gain of about 1.8%

Better temperature coefficient

The power temperature coefficient of the module is -0.30%/°C; in high temperature environments, the power generation gain is about 1.5% -2%

Higher bifacial benefits

The bifaciality rate is about 80%; the power generation gain brought by a 10% bifaciality increase is around 0.8% -1.2%

Better low light performance

When the irradiance is below 600W/ m², the power generation gain is about 0.2%

Power Generation Performance — Lower Degradation

JASOLAR

Power Generation Performance — Better Temperature Coefficient JASOLAR

The temperature coefficient for Pmax is as low as

-0.30%/°C

Power generation benefits in high temperature environments

1.5-2%

Power comparison of n-type and p-type PERC modules

Power Generation Performance — Higher Bifacial Power Gain

JA SOLAR

Power Generation Performance — Excellent Low Light Performance JA SOLAR

Bycium+ cells have better low irradiance performance due to its longer minority carrier lifetime, better passivation and reduced recombination. During early mornings or late evenings with around 400W/m² irradiance, DeepBlue 4.0 Pro showcases an energy yield gain of approx. **0.2%**.

Fig. DeepBlue 4.0 Pro module low irradiance power generation gain

DeepBlue 4.0 Pro modules offer lower BOS & LCOE, delivering greater customer value

↓ **1.4%-2.8%** ↓ **0.7%-1.6%** Lower BOS Lower LCOE

DeepBlue 4.0 Pro VS p-type module

DeepBlue 4.0 Pro **VS** Original n-type module

JASOLAR

DeepBlue 4.0 Pro Series — Integration and Win-win

4 types of high-efficiency and high-power modules and 1 type of conventional modules can satisfied customers' needs in various scenarios.

JASOLAR

Harvest the Sunshine

Performance & reliability evaluation

of n-type high-efficiency PV modules

Yixiao Zhang | TÜV NORD China REN | 25.01.2024

Performance & reliability evaluation of n-type high-efficiency PV modules

- 01 Background
- 02 Performance evaluation
- 03 Characterization
- 04 Reliability evaluation
- 05 Conclusion

Performance & reliability evaluation of n-type high-efficiency PV modules

01 Background

- 02 Performance evaluation
- 03 Characterization
- 04 Reliability evaluation
- 05 Conclusion

Global solar LCOE and capture price

Data: Lafond et al. (2017) and IRENA Database; the reported learning rate is an average over several studies reported by de La Tour et al (2013) in Energy. The rate has remained very similar since then. OurWorldinData.org - Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the author Max Roser Units: USD/MWh

Yixiao Zhang | TÜV NORD China REN | 25.01.2024 4

Emerging technology

Topics

Performance & reliability evaluation of n-type high-efficiency PV modules

- 01 Background
- 02 Performance evaluation
- 03 Characterization
- 04 Reliability evaluation
- 05 Conclusion

Location: Yinchuan, China N 38°27′ 55.38″; E 106°6′ 7.90″

Abundant sunlight for more than 3200h / year

Typical xerothermic climate at average altitude of 1100m

Solar spectrum is highly consistent with AM1.5 spectrum

Equipped condition for PV monitoring and testing

Python data analysis tool

- .ipynb_checkpoints
- DF_output
- farm data
- CleanEvents
- Mea for JA Project_010.ipynb
- Mea for JA Project_012.ipynb
- Mea for JA Project_018.ipynb
- Mea for JA Project_021.ipynb
- Mea for JA Project_DC Meter.ipynb
- Raw data process Combine sheet.ipynb

Based on Python data analysis tool, efficiently perform raw data processing, data quality inspection, problem location analysis, and result output

Distribution of module output power with irradiation

temperature

Power generation

Compared with PERC modules, n-type TOPCon modules cumulative kWh/kW power generation difference is +3.93%.

Temperature coefficienct

Compared with PERC modules, the kWh/kW power generation gain of n-type TOPCon modules also shows an increasing trend when the module temperature increases, which can reflect the temperature coefficient advantage of n-type TOPCon modules.

module operating temperature

Low-irradiance behaviour

Compared with PERC modules, n-type TOPCon modules have more obvious power generation in the early morning and nightfall.

Operation temperature

Compared with PERC modules, the average operating temperature of n-type TOPCon modules is about 1°C lower.

Lab performance test

LID

LID (10kWh/m²)	Min	Max	Ave
n-type Topcon	+0.37%	-0.66%	-0.08%
PERC	-0.17%	-0.96%	-0.55%

LID

After more than one year of outdoor grid-connected power generation, for n-type TOPCon modules, the average attenuation of all modules in the entire string is 0.15%.

Eco design & energy label

	Energy Efficiency Index (EEI _M), kWh/m ²						
Energy Efficiency Class	Subtropical arid	Temperate coastal	Temperate continental				
Α	EEI _M > 566	EEI _M > 257	EEI _M > 330				
В	$496 < EEI_M \le 566$	$226 < EEI_M \le 257$	$291 < EEI_M \le 330$				
С	$426 < \text{EEI}_{M} \le 496$	$195 < \text{EEI}_{M} \le 226$	$252 < \text{EEI}_{M} \le 291$				
D	$356 < \text{EEI}_{M} \le 426$	164 < EEI _M ≤ 195	$213 < \text{EEI}_{M} \le 252$				
E	$310 < \text{EEI}_{M} \le 356$	140 < EEI _M ≤ 164	$182 < \text{EEI}_{M} \le 213$				
F	265 < EEI _M ≤ 310	117 < EEI _M ≤ 140	$151 < EEI_{M} \le 182$				
G	EEI _M ≤ 265	EEI _M ≤ 117	EEI _M ≤ 151				

									Climate Type	Subtropical arid
			Input module effic	ency - from labor	atory measurement	ts			Moduletype	182 p_type
			Irradiance		Module te	mperature		Input the test module Uc	Emod.vear(kWh)	1167.7
			100	15	25	10.01	15.42			
PERC			200	21.42	20.70	18.90	17.07	Uc 33	Pmax,STC (W)	545
I LINO			400	21.79	21.09	19.35	17.57		him (LAMIN (m ²))	2205 5
			600	21.88	21.20	19.49	17.74		rip (kvvn/m.)	2250.0
			800	21.87	21.20	19.50	17.78		CSER	93.3%
	Input pa	arameters	1000 1100	21.79 21.74	21.13 21.08	19.45 19.41	17.74		EEIM	451.2
	a,	0.07491							Energy Efficiency Class	с
	β	20	Input module effici	angu - from labor						
				ency - nonn abon	nory measurement	ts			Climate Type	Subtropical arid
	Define s	same ar	Irradiance	ency - nonnadon	Module te	emperature		Input the test module Uc	Climate Type Module type	Subtropical arid 182 n_type
	Define s	same ar	Irradiance	15	Module te	emperature 50	75	Input the test module Uc	Climate Type Module type Emodyear (kWh)	Subtropical arid 182 n_type 1286.6
	Define s	same ar	Irradiance	15 21.89	Module te 25 21.18	emperature 50 19.35	75 17.47	Input the test module Uc	Climate Type Module type Emodyear (kWh)	Subtropical arid 182 n_type 1286.6
080	Define s and β	same ar	Irradiance 100 200	15 21.89 22.46	Module te 25 21.18 21.76	50 19.35 19.98	75 17.47 18.15	Input the test module Uc Uc 35	Climate Type Module type Emodyear (kWh) Pmax,STC (W)	Subtropical arid 182 n_type 1286.6 570
ÖPCon	Define s and β	same ar	Irradiance 100 200 400	15 21.89 22.46 22.83	Module te 25 21.18 21.76 22.14	50 19.35 19.98 20.42	75 17.47 18.15 18.64	Input the test module Uc Uc 35	Climate Type Module type Emod,year (kWh) Pmax,STC (W)	Subtropical arid 182 n_type 1286.6 570 2295.5
OPCon	Define s and $^{\beta}$	ame ar	Irradiance 100 200 400 600	15 21.89 22.46 22.83 22.91	Module te 25 21.18 21.76 22.14 22.25	50 19.35 19.98 20.42 20.54	75 17.47 18.15 18.64 18.79	Input the test module Uc Uc 35 TOPCon have better	Climate Type Module type Emod,year (kWh) Pmax,STC (W) Hp (kWh/m ²)	Subtropical arid 182 n_type 1286.6 570 2295.5
OPCon	Define s and β	same ar	Irradiance 100 200 400 600 800	15 21.89 22.46 22.83 22.91 22.87	Module te 25 21.18 21.76 22.14 22.25 22.21	50 19.35 19.98 20.42 20.54	75 17.47 18.15 18.64 18.79 18.80	Input the test module Uc Uc 35 TOPCon have better operating	Climate Type Module type Emodyear (kWh) Pmax_STC (W) Hp (kWh/m ²) CSER	Subtropical arid 182 n_type 1286.6 570 2295.5 98.3%
OPCon	Define s and ^β	same ar	Irradiance 100 200 400 600 800 1000	15 21.89 22.46 22.83 22.91 22.87 22.77	Module te 25 21.18 21.76 22.14 22.25 22.21 22.11	50 19.35 19.98 20.42 20.54 20.53 20.45	75 17.47 18.15 18.64 18.79 18.80 18.74	Input the test module Uc Uc 35 TOPCon have better operating	Climate Type Module type Emodyear (kWh) Pmax,STC (W) Hp (kWh/m ²) CSER	Subtropical arid 182 n_type 1286.6 570 2295.5 98.3%
OPCon	Define s and ^β	same ar	Irradiance 100 200 400 600 800 1000 1100	15 21.89 22.46 22.83 22.91 22.87 22.77 22.70	Module te 25 21.18 21.76 22.14 22.25 22.11 22.05	50 19.35 19.98 20.42 20.53 20.45	75 17.47 18.15 18.64 18.79 18.80 18.74 18.69	Input the test module Uc Uc 35 TOPCon have better operating temperature	Climate Type Module type Emod,year (kWh) Pmax,STC (W) Hp (kWh/m ²) CSER EElu	Subtropical arid 182 n_type 1296.6 570 2295.5 98.3% 498.1

Performance & reliability evaluation of n-type high-efficiency PV modules

- 01 Background
- 02 Performance evaluation
- 03 Characterization
- 04 Reliability evaluation
- 05 Conclusion

Emerging technology

17

Characterizations of n-type modules with new cell technology

Production efficiency 25.0%-26.0% Theoretical efficiency 28.2%~28.7%

Characterizations of n-type modules with larger dimensions

Installation	Larger dimensions	M2 92.99 156 156 75	G1 92 92 91 158 75	M6 2223 166	M10 241 182	210 210
r ackaging a transportation		Area: 24432mm ²	Area: 25199mm ²	Area: 27416mm ²	Area:	Area: 44096mm²
Mechanical properties		(base line)	(3.14% ↑)	(12.21% ↑)	(35.11% ↑)	(80.48% 1)
Electrical safety	PV module	156.75 (144 half-cut)	158.75 (144 half-cut)	166 (144 half-cut)	182 (156 half-cut)	210 (132 half-cut)
	Size (mm)	2007x992	2031x1008	2117x1052	2465x1134	2384x1303
	Pmax (W)	390	420	475	620	720
	lsc (A)	9.79	10.70	11.46	14.30	17.74
	Voc (V)	49.28	48.74	51.25	55.34	49.20

٠

•

٠

٠

G12

Performance & reliability evaluation of n-type high-efficiency PV modules

- 01 Background
- 02 Performance evaluation
- 03 Characterization
- 04 Reliability evaluation
- 05 Conclusion

Accurate power testing

The internal capacitance leads to a strong hysteresis effect in I–V measurements. This hysteresis introduces a significant error in measurement results.

The test results of the multi-flash and DB methods are basically consistent with those of the long pulse simulator.

Accurate power testing

Temperature co-efficient

Regular natural cooling + 10ms pulse single flash

Low temperature area + 10ms pulse single flash

Temperature control box + accurate test

Moisture

Damp-heat and thermal cycle test simulation

7 0 0 %						
-7.00%	DH1000	DH2000	DH3000	TC200	TC400	TC600
n-type double glass	-1.96%	-3.22%	-3.37%	-0.37%	-1.53%	-1.72%
n-type double glass	-1.95%	-3.51%	-3.88%	-0.58%	-1.23%	-1.38%
n-type single glass	-2.70%	-4.42%	-4.97%	-1.38%	-1.43%	-2.14%
n-type single glass	-3.30%	-4.91%	-5.79%	-1.66%	-1.83%	-2.30%

Installation

Installation method

- The position of mounting holes
- The amount of mounting holes
- Tracker or Fixed bracket

Extreme climate

• Rainy, snowy, hailing, windy weather

Packaging & transportation

The weight and size of the whole package of largersize modules are greatly increased, raising up the risk in transportation.

For larger-dimension modules, the tray and packaging methods is highly recommended to be strengthened.

Random vibration testing	Dynamic mechanical load
Inclined impact test	Thermal cycles
Rotational edge drop test	Humidity freeze
Vertical shock test	Mechanical load
Horizontal impact test	

Mechanical properties

Electrical safety

Current-related tests for bifacial PV modules

When the temperature of installation environment is high enough (e.g. dessert climate), the installation method is difficult for heat dissipation (e.g. double-skin curtain wall BIPV), higher current carrying capacity is required for bypass-diode in larger-size modules.

	166mm (144 half-cut)	182mm (156 half-cut)	210mm (132 half-cut)
lsc-BSI (A)	13.87	17.30	21.47
Imp-BSI (A)	12.52	16.24	20.57
MQT 18 Bypass diode testing: 1.4*Isc-BSI at 75°C	Thour, according to IEC TS 63126 level 2		
Applied current (A)	27.19	33.91	42.08
MST 26 Reverse current overload test: 1.35*fuse	rating 2hours, according to IEC 61730-2		
Applied current (A)	27.00	40.50	47.25
MQT 11 Thermal cycling test: Imp-BSI, according	to IEC 61215-2		
Applied current (A)	12.52	16.24	20.57

Electrical safety

Thermal cycling test

Normal operation

Bypass diode fails

Junction box melt after thermal cycling

Electrical safety

Bypass diode thermal test

Power degradation after bypass diode thermal test

Performance & reliability evaluation of n-type high-efficiency PV modules

- 01 Background
- 02 Performance evaluation
- 03 Characterization
- 04 Reliability evaluation
- 05 Conclusion

Conclusion

- LCOE continues to decrease, which is becoming the most important factor of global PV projects.
- n-type PV modules with larger dimensions is an emerging technology.
- Outdoor performance test shows the power generation advantages of n-type PV modules.
- Risks come along with the benefits of highefficiency PV modules with larger dimensions and larger current, solutions are already available and therefore additional care need to be taken.

TUVNORD

Do you have questions?

Yixiao Zhang T.: +86 150 5312 8612 M.: yixzhang@tuv-nord.com

tuev-nord.de

this Webinar is JA Solar

25 January 2024

2:00 pm – 3:00 pm	GMT, London
3:00 pm – 4:00 pm	CET, Berlin
4:00 pm – 5:00 pm	EET, Athen

Mark Hutchins Magazine Director pv magazine

N-type trends in 2024 Q&A

Lida Guo Senior Product Strategy Manager JA Solar

Yixiao Zhang Technical Engineer TÜV Nord

Most-

read

online!

The latest news | print & online

with

Neoen shut down Australian solar-plusstorage plant after 7 years

by David Carroll

Meyer Burger to cease PV module production in Germany

by Emiliano Bellini

Coming up next...

Friday, 2 February 2024 11:00 am – 12:00 pm CET, Berlin **Tuesday, 6 February 2024** 11:00 am – 12:00 pm EST, New York City 5:00 pm – 6:00 pm CET, Berlin Many more to come!

Wechselrichter für das Repowering von Gewerbeanlagen – worauf es ankommt

(Webinar in German)

Understanding airplanes vs drones in aerial inspection In the next weeks, we will continuously add further webinars with innovative partners and the latest topics.

Check out our pv magazine Webinar program at:

www.pv-magazine.com/webinars

Registration, downloads & recordings are also be found there.

Upcoming event!

SUNRISE ARABIA

Date: January 31, 2024

Place: Riyadh, Saudi Arabia

REGISTER NOW

Organized by: pv magazine group

this Webinar is JA Solar

Mark Hutchins Magazine Director pv magazine

Thank you for joining today!

