

Agenda

- Company Introductions
- Market Install Expectations
- Tracker Type and Installation
- Nevados ATT® Field Experience
 - System Features
 - Grading Considerations
- New Tools and Analytics
- Eclipse-M Lean Method

Est. 2014 | Oakland, CA

About Nevados

Our objective is to offer cost-effective solar tracking solutions that eliminate the need for site grading.

LEADERSHIP

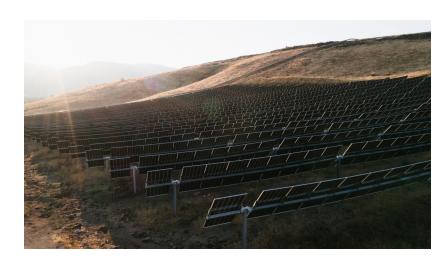
YEZIN TAHA
CEO & Founder

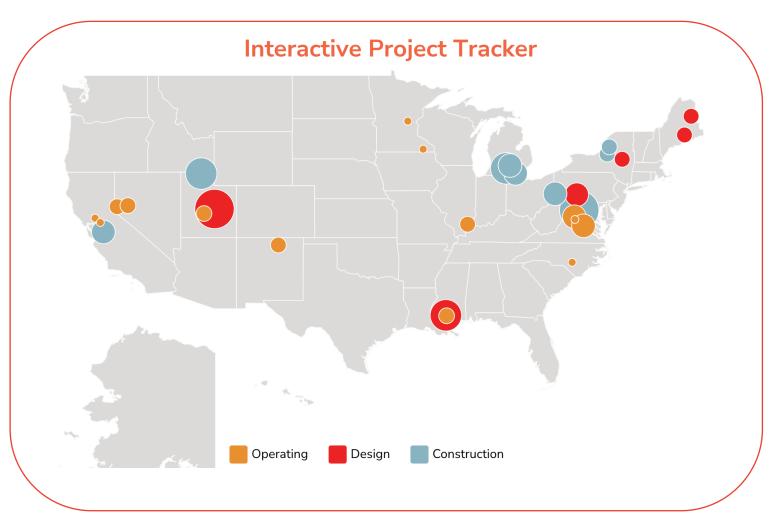
- Former Black & Veatch, Trane, GE
- Mechanical Engineer, Illinois at Urbana Champaign

JACK BENNETT
COO & President

- Founder and CEO of Novasource
- SunPower VP of Strategic Transformation

JENYA MEYDBRAY
Chief Commercial Officer

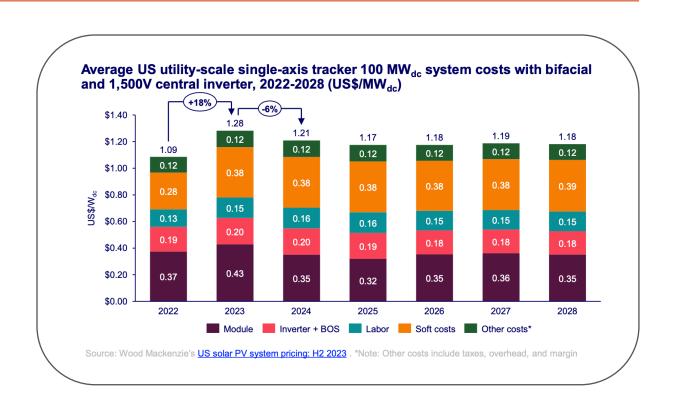

- Founder and CEO of PVEL
- SunPower Reliability Engineer



Project Experience

Nevados Project activity

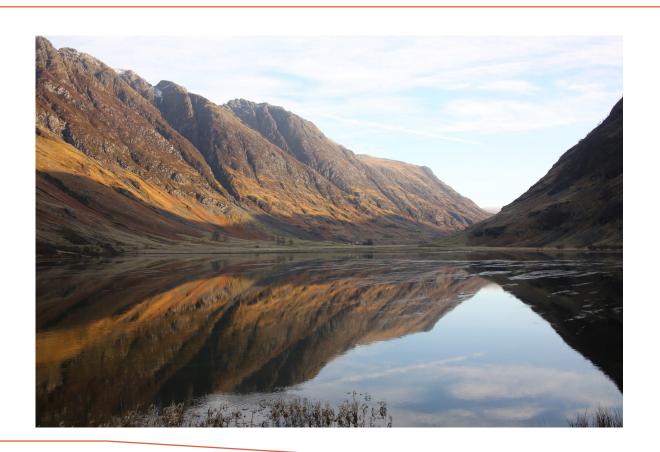
- > 1 GW installed and in process
- 1 GW projected shipments in 2024



Solar Tracker Installation

- Consultative sale to overcome unique challenges
 - Differential Settlement

- Installation Performance:
 - Electrical design of site
 - Labor profile and environment
 - Technology selection



About Eclipse-M

- Decades of Solar Project and Operations Expertise
- OEM Support, 3rd Party
- Project Execution Specialists
- Lean Construction
- Driving Better Results
- Project Support
- CM and Owner's Rep Services
- Developer Support
- Improvement Programs
- > 6 GW project experience
- >80 years Leadership Experience in PV

Problem – all time studies are not created equally! Eclipse-M endeavors to evaluate each tracker on a level playing field:

- Installation manuals are thoroughly reviewed and evaluated.
- All time data is obtained from actual field installation.
- Activities are videoed and carefully evaluated and compared to existing data to ensure a consistent treatment of similar activities (e.g., torquing).
- The impact of the skill of the installer is removed from the evaluation.
- The result is a clean, level-playing field value-add result that can be compared to other trackers in our database.

Market Tracker Install Rates

- What is a good installation rate/experience?
- Components of rate:
- tracker
- Value-add install requirements the physical work
- Materials/supply chain getting the tracker to point of install
- Site preparation requirements and readiness getting around the site, civil work, conditions (mud) and topography
- Material handling methods presenting materials to the install team
- Module Size

Components of rate of installation:

Value-Add

- Tracker Design
- Complexity
- Tools required
- Variation of hardware
- Ergonomics

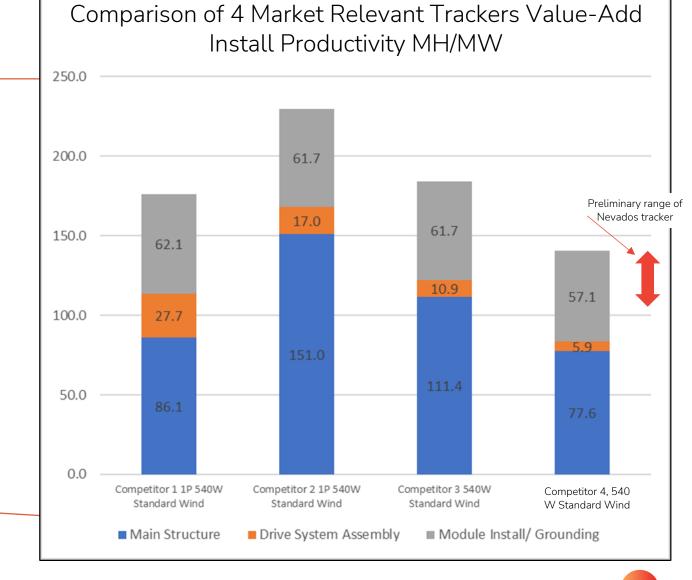
Site Prep

- Roads
- Underground
- Cut-fill
- topography

Materials – Supply Chain

- Central vs. local
- Pre-assembly
- Truck offload
- Organized delivery

Materials Handling


- Number of moves
- Proximity to work
- Right materials
- packaging

Value-Add comparisons

- 4 trackers compared
- Work divided into 3 buckets
 - Structure complexity, number of components, precision requirements
 - Drive system type of drive, mounting system
 - Module attach- bolt/nut, lockbolt, top clamp, clip/clamp
- Effort to achieve <100 MH/MW in the industry

Solar Tracker Installation

Tracker selection has large impact on installation performance

- Type of tracker 1P, 2P, single axis
- Piles per MW
- Tube length & Bay vs. through-bearing design
- Alignment requirements, pile positioning
- Structure Design post cap, bearing/bushing, drive system, damper
- Module attachment methodology
- Overall complexity (# of fasteners / MW); fastener variation
 - Overall BOM / MW
- Tracker compatibility with site environment

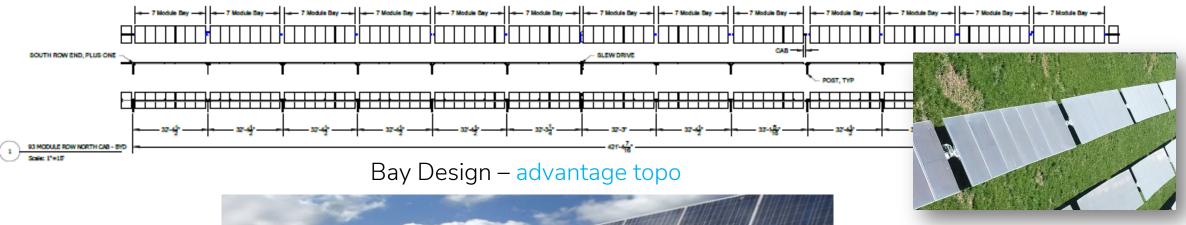
Tracker: 1P v. 2P

Eclipse-M

1P suitable:

- General applications
- Challenged Geotech
- Topographical variations

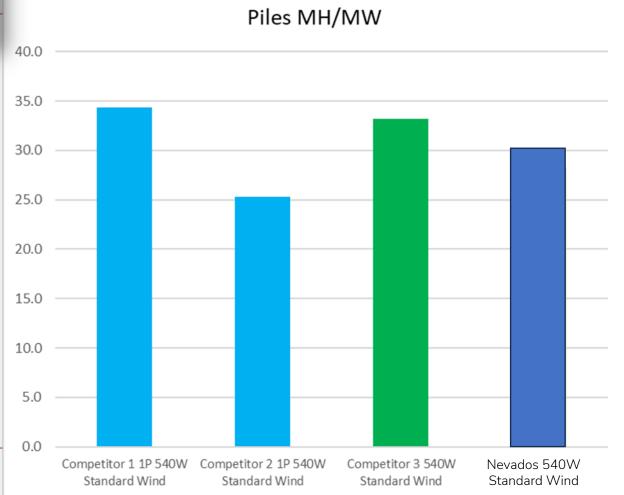
2P suitable:


- Longer posts, bigger structure
- Large flat sites
- Easy Geotech

Tube Length & Bay vs. Continuous Design

Continuous Design – higher density of mods

Major Tracker Tube Style and Terrain Capability


Tracker	Tube Style	Terrain Following
Nevados	Bay	YES (N-S, E-W) non-planar
Nextracker	Bay	NO – planar; (NX Horizon – XTR)
ATI	Continuous	Partial (E-W) planar (N-S)
FTC (2P)	Continuous	Planar
Soltec (2P)	Continuous	No - Planar
PVH Axone-Duo	Continuous	No - Planar
Gamechange	Continuous	No - Planar
Valmont	Bay	No – Planar (shorter)
SFR	Continuous	No - Planar

Piles/MWdc

- Pile accuracy can be critical to install experience/cost.
- Piles per mw can impact overall Tracker install cost:
 - total number
 - refusals and out of alignment issues
 - materials handling
- Sites with difficult topography and Geotech create a challenge to trackers with longer and more piles

© 2024 Nevados

Alignment Requirements

- Most 1P and 2P trackers require installation in a plane.
 - The tracker cannot follow the terrain
 - Civil work is required on many sites to smooth the topography
 - Tube to tube alignment is typically within ½ degree
 - This is especially true for continuous trackers
- Bay Trackers can have more flexibility
 - Some flex at each pile
 - Terrain following systems can greatly ease requirements for alignment
 - Can eliminate the use of lasers or string lines
- New designs such as the ATT can also greatly relieve pile requirements

Tracker Structure Design

	Good	Better	Best	
Post Cap	One-Piece	Multi-piece	Integrated	
Bearing/Bushing	One piece	Multi-piece	with Bearing	
Tube Attachment	Complex	Through Bearing	Cradles	Splice issues
Tube Count	Bay Design	Continuous Design		
Drive System	Drive Arm	Slew	Actuator	Hybrid
Dampers	Many	Few	None	

Nevados ATT®

Very active area, really drives overall install

- Bolt / Nut
- Top Down
- Lock Pin (Huck)
- Clip/Clamp
- Hybrid

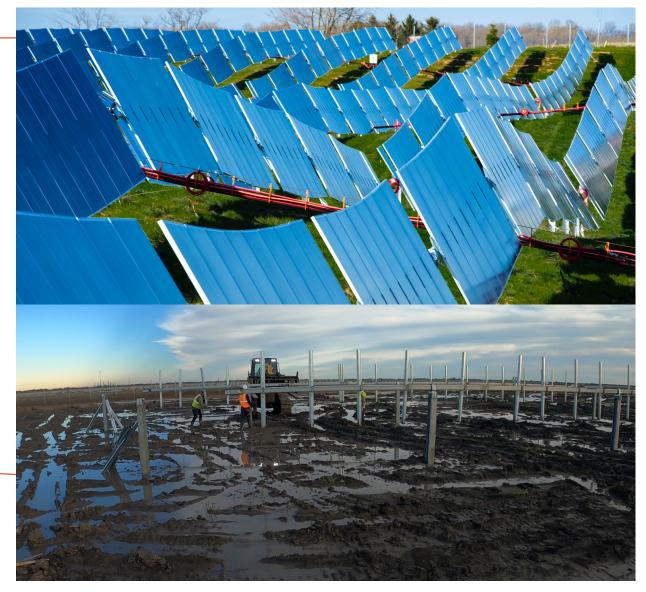
Module install can be 40% of the total install time

Туре	Pre-Position and Lock Rails?	Rate of Install of Hardware
Bolt/Nut	Yes	Slow
Lock Pin (Huck)	Yes	Medium
Clip/Clamp	Yes	Fast
Hybrid	Maybe	Fast
Top Down	No	Fast

Hardware / MW

- Hardware count and variation is a driver of complexity.
- The number of connections not including module interconnection range from 3660 per MW to 5000 per MW.
- Tracker may have a few variations in hardware size to 10 or more.
- Consideration to hardware count and complexity is an important component in the consideration of installation experience with various trackers.
- Pre-assembly by the OEM can reduce part count and hardware count – this is a current industry trend.

- Planar vs. Topo following- topo little to no grading
- Pile Accuracy (tolerance table) Nevados greatly reduces pile accuracy requirements
- Additional considerations topo following reduces length of pile (drive to minimum embedment requirement.)
- Soil stability settling of ground concerns are minimized with topo following.



What does the ability to follow the terrain buy you?

- Little or no grading
 - (\$0.04-0.12/w)
- Wide-open tolerances on

Pile design

- Much fewer pile variations (length)
- Reduces mud and the need for as many retention ponds.

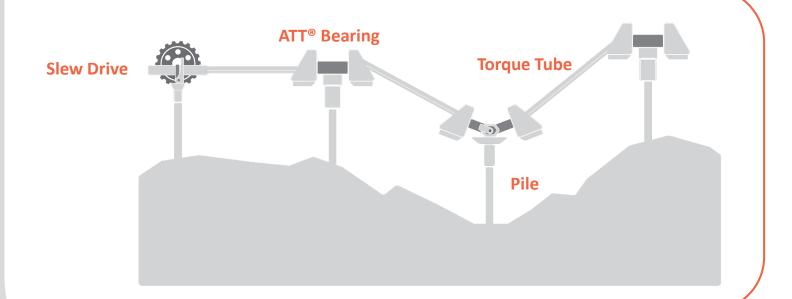
How does the Nevados All Terrain Tracker® help your installation?

The same features that allow for unparalleled terrain capabilities help with installation times

Nevados All Terrain Tracker®

- · Self-powered, independent row, 1P tracker system
- · Up to 26% (15 degrees) of angle change at every post
- · Integrated distributed friction dampers
- Entire system has 2 bolt sizes, no jigs or fixtures.

Tracker Architecture


Continuous Torque Tube Tracker on terrain with variable piles

Nevados ATT®

- Typically eliminates grading
- Articulating bearings
- Consistent pile reveal heights

Navigate **undulating terrain** without grading or adding steel

Savings of over 3c/w

ATT® System Architecture

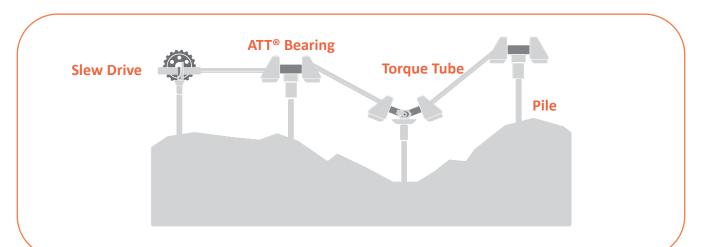
SLEW DRIVE

- Kinematics drive over 53 GWs supplied globally
- Controlled via row controller

BEARINGS

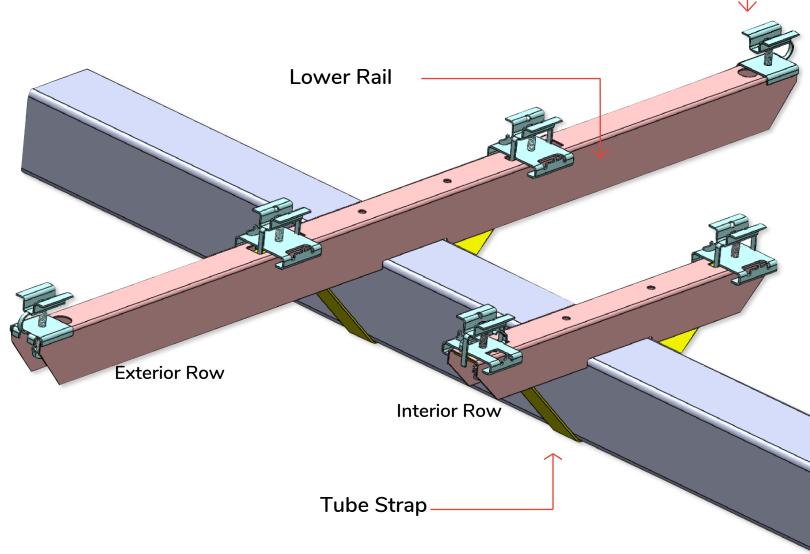
- Couples torque tubes
- Every non-drive pile
- Articulation to navigate terrain

MODULE CLIPS

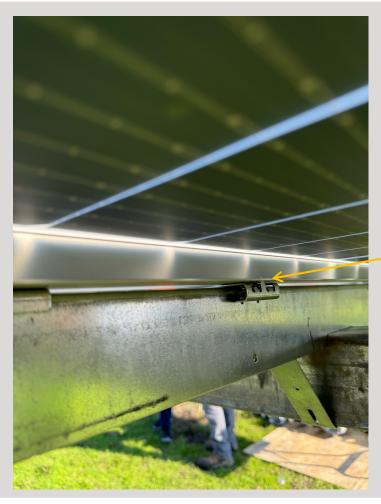

- E/W alignment tabs
- Spring loaded top clamp
- Integrated grounding features

STEEL

- Consistent pile reveal heights across site
- Square sectioned torque tube designs – easy alignment on bearing cradles



Upper Clamp


Module Clamps

- Compatible with all Cr-Si and First Solar modules
- Self aligning (no jigs needed)
- Accommodate module changes easily, module clamps slide on torque tube
- Integrated grounding (UL 2703)

Module Clamps

E-W Module Alignment Pins

Bearing Features

- Articulation at every post to navigate terrain
- Bearings ship pre-kitted
- Entire system uses only two <u>bolt</u> sizes for tool and training simplification
- Integrated wind dampening (no external dampers)

Straight Through

Articulating

Bearing Tolerances

Terrain capabilities also create installation friendly tolerances

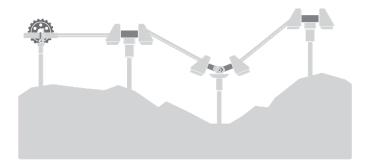
N/S Pile Tolerance ±1 inch

Vertical Pile +/Tolerance #2°

Twist ±5°

Straight Through

Articulating


Flat Bill of Materials

- Simplifies on-site staging and inventory management
- Standardized components projects are configurations based on topography and other project requirements

COMPONENT CATEGORY	PART NUMBER	DESCRIPTION
	NE21P-0009	Post Mount, Slew Drive (Inch)
	NE21P-0095	Cradle, Concentric, Slew Drive, HE6 (Inch)
	NE21P-0096	Cradle Clamp, Concentric, Slew Drive, HE6 (Inch)
	NE21P-0097	Bracket RC Antenna, Slew Drive (Inch)
Γ	NE21P-0084	Slew Drive, HE6, 16 mm Motor Shaft
	NE21P-0098	Motor, Slew Drive, 16mm Shaft, 120Nm Torque, RC Gen 2
Г	NE61P-0070	Bolt, Ser. Flange, M12x1.75x25mm, Grade 8.8, HDG
	NE61P-0005	Carriage, Bolt, M12x1.75x40 mm, Grade 8.8, HDG
	NE64P-0001	Nut, Ser. Flange, M12x1.75 mm, Grade 8.8, HDG
SLEW DRIVE KIT	NE61P-0009	Bolt, Ser. Flange, M12x1.75x65mm, Grade 8.8, HDG
	NE63P-0128	Washer, Flat, ID 9/16" x OD 1.375" x HT 0.125", 316SS
	NE45P-0004	Bonding Strap, A2250-18
	NE61P-0016	BOLT, Ser. Flange, M6x1x25mm, Passivated, 18-8 SS
	NE64P-0005	Nut, Ser. Flange. M6x1mm, Passivated, 18-8 SS
	NE21P-0093	Cradle, Concentric, Slew Drive, HE8 (Inch)
	NE21P-0094	Cradle Clamp, Concentric, Slew Drive, HE8 (Inch)
	NE21P-0083	Slew Drive, HE8, 16 mm Motor Shaft, Horizontal Motor Mounting Holes
	NE61P-0070	Bolt, Ser. Flange, M12x1.75x25mm, Grade 8.8, HDG
	NE66P-0004	Screw, Socket Head Cap, M12x1.75x30mm, Grade 8.8, HDG
	NE61P-0007	Bolt, Hex, M8x1.25x60 mm, Fully Threaded, Grade 8.8 HDG
	NE64P-0002	Nut, Ser. Flange, M8x1.25 mm, Grade 8.8, HDG
	NE32P-0065	Clamp, 35mm tall, Group A Holes, c-Si Module Clip
	NE32P-0066	Tube Strap, Interior, c-Si Module Clip
MODULE CLIP KIT	NE32P-0067	Lower Rail, Interior, c-Si Module Clip
	NE32P-0068	Standoff, c-Si Module Clip
	NE32P-0072	Clamp, Exterior, 35mm tall, c-Si Module Clip
	NE32P-0069	Tube Strap, Exterior, c-Si Module Clip
	NE32P-0070	Lower Rail, Exterior, c-Si Module Clip
	NE22A-0066	Compact Straight-Through Bearing Assembly (Inch)
	NE23A-0016	ASY U-Joint, Post Top
MECHANICAL ASSEMBLIES	NE22A-0067	Compact Mechanical Stop Bearing Assembly (Inch)
	NE22A-0005	Compact Row End Bearing Assembly (Inch)
	NE22P-0118	Compact Mechanical Stop Weldment (Inch)
	NE61P-0011	Bolt, Ser. Flange, M12x1.75x45mm, Grade 8.8, HDG
POST TOP FASTENERS	NE64P-0001	Nut, Ser. Flange, M12x1.75 mm, Grade 8.8, HDG
	NE61P-0005	Carriage, Bolt, M12x1.75x40 mm, Grade 8.8, HDG
	NE-F10-332-585	10 Ga, 80 ksi, Torque Tube, 332.585 Inch
Г	NE-F10-287-019	10 Ga, 80 ksi, Torque Tube, 287.019 Inch
TORQUE TUBES	NE-F13-332-585	13 Ga, 80 ksi, Torque Tube, 332.585 Inch
Γ	NE31P-0244	80 ksi, Torque Tube, 2 Inch
	NE-F10-403-000	10 Ga, 80 ksi, Torque Tube, 403 Inch
	NF41P-0064	MOLITING STRAP ROW CONTROLLER GEN 2 (INCH)

Consistent Pile Reveal Heights

- Simplified pile driving
- Allows for fast installation performance
- Designed for chest height install

Disconnected Torque Tube System

- Sections of bays can be left "open" to allow material handling equipment to pass through
- Material handling savings
- Convenience for long N/S rows

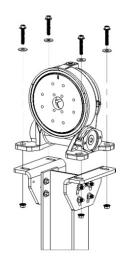
Nevados ATT® Customer Feedback

Nevados All Terrain Tracker Installation Efficiency

From: Allen Oldroyd, General Superintendent MYR Group

Note: Budgeted rates are defined based on averages of other tracker manufacturers.

Tracker staging and shakeout	Consistently getting 2-3x better efficiency than the budgeted production rate.
Tracker Drive Motors	Consistently getting 2x better efficiency than the budgeted production rate.
Torque Tube Set	This one fluctuates a bit but is comparable to others. A little slower than best-in-class competitor due to the module rails needing to be slid on during installation. Estimated 25% less efficient than the fastest competition.
Tracker Final Install and Torque	Huge efficiency gains here. Averaging <u>2-3x better efficiency than budgeted</u> . This is our largest crew and the <u>labor savings have been immense</u> .
DC Cable Install	The ability to leave out the torque tube by the cab line has had us get an average of <u>1.5x the budgeted</u> <u>productivity rate</u> .
Pile Install	Constant pile elevations have made pile install simple and efficient. Requiring less people, lasers, string line, etc. Efficiency gains of 2x budgeted production.


Testimonial Video here: https://vimeo.com/8534
99154/0f88acb1a6

Customer Feedback Loop

Upcoming Product Changes

- Components arriving to site prekitted
- Bearing clamp caps shipped separately
- Continued reduction of component counts

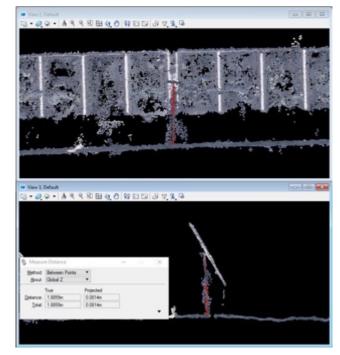
Slew Drive cradles pre-assembled

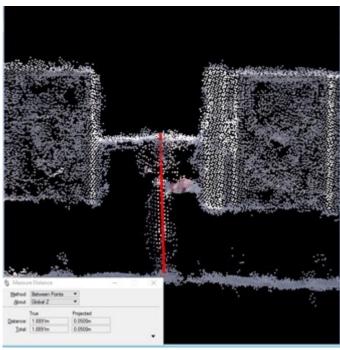
Module clips shipping pre-assembled

ATT® Bearing cradles shipped separately

New Tools/Techniques

- Drone Flyovers
- Torque Control Tools
 - CTIW, Controlled Torque Impact
 - Nut Runner
 - Torque Coupler
- Lean Construction Methodologies Eclipse-M Lean Method
 - Materials Handling
 - Pre-assembly
 - Optimized Operations


Drone Flyover


Using low cost RGB camera Can be used to:

- measure as-built angle "capacities" at each pile
- verify that a settlement event has occurred
- determine magnitude of settlement

Measured precision:

1-2 inches across x,y,z dimensions

Smart Tools

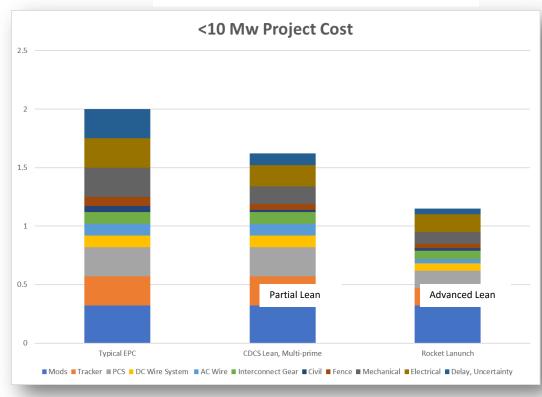
WHAT IS IT?

- Alternative to torquing every bolt with a torque wrench
- Establishes a controllable statistical window of torque – achieving requirements of some trackers.
- Have evaluated the Milwaukee CTIW system with Nevados and it meets requirements.
- Faster nut runners can improve nut-bolt module installation

SAVINGS IMPACT

Reduces the install labor for hardware nearly in half

Eclipse-M Lean Method



WHAT IS IT?

Lean based construction methods

- Lean strategy and work sequencing
- Standard Work Instructions
- Headcount Planning based a balance daily output (takt time) approach
- Materials Handling Systems greatly reducing site logistics cost
- Use of Pre-assembly
- Documented Project Execution Plan

Installation Cost Example

Closing Thoughts

- Understand the tracker architecture and how it might affect installation
- Maintain partnership with equipment providers to improve current and future projects
- 3rd party experts like Eclipse-M
 - Documentation, training is critical
 - Standard Work, implementing a system creates sustainable progress

Continue the conversation

Rahul Chandra
Head of Product Marketing
rahul@nevados.solar

Bill Poulin

Managing Partner, EM

bill@eclipse-m.com

- Oakland HQ Training
- Sandbox Training at Davis, CA
- Virtual Consults
- Meet with us at tradeshows

Questions

