Researchers from India’s Aligarh Muslim University and Universiti Teknologi Malaysia have developed a prototype PV module featuring a titanium oxide nanofluid-based cooling technique.
The cooling system consists of an assembled back-channel attached on the rear side of the panel, through which a melt of titanium oxide and water can flow. The fluid flow tubes are placed between the module backsheet and a tube insulation layer and all of them are applied onto a channel base.
“The lower side of the tubes is adequately insulated to avoid extracted heat loss,” the researchers said.
The proposed technique was tested in a PV system with multilevel inverter topology for a PV-thermal co-generation unit. The system was simulated for 1,000 W/m2 insolation. The scientists used a concentration of nanofluid of 0.6%, which they considered an optimum value of nanoparticle concentration in water, as there is a chance for particles to agglomerate if a higher concentration is used.
“Hence, the intended purpose of nanofluid failed as thermal conductivity decreases in that scenario,” the researchers said.
They compared the temperature of the panel to that of similar panels with air or water flowing through the tubes. They found that the operating temperature of the panel with the titanium oxide nanofluid fell significantly. They said the nanofluid-based panel had an average operating temperature of 52 C, while the airflow panel had a temperature of 71 C. The one based on water flow came in at 61.2 C.
The scientists describe their research in “Efficiency improvement of the solar PV-system using nanofluid and developed inverter topology,” which was recently published in Energy Sources.
This content is protected by copyright and may not be reused. If you want to cooperate with us and would like to reuse some of our content, please contact: editors@pv-magazine.com.
By submitting this form you agree to pv magazine using your data for the purposes of publishing your comment.
Your personal data will only be disclosed or otherwise transmitted to third parties for the purposes of spam filtering or if this is necessary for technical maintenance of the website. Any other transfer to third parties will not take place unless this is justified on the basis of applicable data protection regulations or if pv magazine is legally obliged to do so.
You may revoke this consent at any time with effect for the future, in which case your personal data will be deleted immediately. Otherwise, your data will be deleted if pv magazine has processed your request or the purpose of data storage is fulfilled.
Further information on data privacy can be found in our Data Protection Policy.