Researchers at China's Henan University have fabricated a perovskite solar cell based on a carbon electrode that reportedly achieves a power conversion efficiency of 20.8% while providing enhanced stability.
Metal contact electrodes commonly used today can stimulate the degradation of perovskite solar cells due to the diffusion of metal impurities across the interfaces. This issue could be theoretically overcome by replacing the metal contact with carbon electrodes, which are highly promising for commercialization due to their ambient pressure processability based on industrially established printing techniques.
Perovskite solar cells based on carbon electrodes, however, create a problem elsewhere in the devices, leading to performance losses at the point where the carbon electrode meets the perovskite layer.
“For carbon electrode perovskite solar cells, the interfacial contact between carbon electrode and perovskite is of great significance to the performance of solar cells,” the scientists said. “Most of inorganic hole transport layers (HTLs) are based on dispersive nanoparticles those could easily aggregate to form rough contact with both perovskite and the viscous carbon paste; the holes collection is thus negatively affected.”
They sought to solve this issue by placing an organic semiconducting polymer called polythiophene (P3HT) between perovskite and an HTL made of nickel(II) oxide (NiOx) and said this organic/inorganic planar HTL structure has superior electrical contact for carbon electrode perovskite solar cells.
“The organic P3HT layer enables effective moisture-inhabitation and densely contacted interface with matched energy-level alignment with perovskite, while the stable NiOx nanoparticle layer further protects P3HT from being corroded by carbon paste so that we can further optimize carbon blade-coating deposition to form densely contact with HTL,” they also explained.
The Chinese group built the cell with a substrate made of indium tin oxide (ITO), a tin(IV) oxide (SnO2) buffer layer, a perovskite absorber, the P3HT layer, the HTL made of NiOx, and a carbon electrode.
The electrode is based on a carbon paste containing carbon black and graphite powder provided by Saidi Technology Development Inc., China. “Carbon electrode was prepared by blade-coating process and the wet film was annealed at 110 C for 5 min,” it said.
The academics compared the performance of the solar cell with that of a reference device without the modified anode buffer interfaces, which they say are able to facilitate charge collection.
The champion solar cell built with these interfaces achieved a power conversion efficiency of 20.8%, an open-circuit voltage of 1.15 eV, a short-circuit current of 22.9 mA/cm2, and a fill factor of 78.8%.
“This efficiency is among the top values of carbon electrode perovskite solar cells; a champion efficiency of 22% was reported from assembly of semi-cells with carbon electrode substrate,” they stated. “The operational stability of this cell obviously improves because of an introduction of the hydrophobic P3HT layer and the dense carbon pre-covering.”
The reference device, by contrast, reached an efficiency of only 13.4%.
The researchers presented the novel cell tech in “Efficient carbon electrode perovskite solar cells with robust buffer interfaces,” which was recently published in the Journal of Materials Research and Technology.
This content is protected by copyright and may not be reused. If you want to cooperate with us and would like to reuse some of our content, please contact: editors@pv-magazine.com.
2 comments
By submitting this form you agree to pv magazine using your data for the purposes of publishing your comment.
Your personal data will only be disclosed or otherwise transmitted to third parties for the purposes of spam filtering or if this is necessary for technical maintenance of the website. Any other transfer to third parties will not take place unless this is justified on the basis of applicable data protection regulations or if pv magazine is legally obliged to do so.
You may revoke this consent at any time with effect for the future, in which case your personal data will be deleted immediately. Otherwise, your data will be deleted if pv magazine has processed your request or the purpose of data storage is fulfilled.
Further information on data privacy can be found in our Data Protection Policy.