Scientists in the UK have explained the mechanism behind chlorine used to boost the efficiency of cadmium telluride thin-film solar cells. With new understanding of the chemical processes at work in the manufacturing process, the group hopes to be able to push for cell efficiencies beyond 25%.
An international research team has conducted a techno-economical comparison between lithium-ion and lead-acid batteries for stationary energy storage and has found the former has a lower LCOE and net present cost. Through their analysis, which was performed assuming the use of the batteries in connection with a 10 kW, grid-tied PV system, the scientists concluded that lithium-ion batteries are the most viable solution.
Scientists in the United States used machine learning to analyze maintenance reports, performance data and weather records from more than 800 solar farms located across the country. The analysis allowed them to determine which weather conditions have the biggest impact on PV generation, and to suggest the most effective ways to boost the resilience of PV installations to extreme weather events.
Indian manufacturer Goldi Solar has introduced the HELOC̣ Pro series, featuring mono-facial and bifacial modules based on M10 wafers.
NREL researchers developed a system that uses heated silica particles for thermal energy storage. The baseline technology is designed for a storage capacity of up to 26,000 MWh and is claimed to have a cost of of between $2 and $4 per kWh.
Pyramid Electronics has released three-phase string solar inverters based on silicon carbide power devices. The inverters are available in power ratings ranging from 5 kW to 15 kW, including models with three maximum power point trackers.
H2 Energy Europe is building a power-to-gas project in Denmark and Everfuel wants to put hydrogen refueling stations in Sweden. Chinese energy giant Sinopec said it wants to invest massively in hydrogen and the Australian Energy Market Operator (AEMO) has said hydrogen will be the main driver for “very quick” growth in electricity demand.
Conceived by Swiss researchers, the battery shows good stability over 50 cycles, with an average energy efficiency of 68% and a water-splitting voltage efficiency of 64.1%. According to its creators, the device produces pure hydrogen that only needs to be dried and compressed for optimal storage.
Designed by German provider IBC Solar, the mounting structure can accommodate modules with lengths from 1,500 to 2,100mm and widths from 980 to 1,150mm. It comes with floor rails with pre-mounted construction protection mats and integrated cable ducts for up to 28 6mm² cables.
Scientists in the U.S. discovered a promising new battery chemistry based on chlorine and table salt. Batteries based on this chemistry can achieve at least six times the energy density of today’s lithium-ion batteries, according to the group that created it. The prototype battery could already be suitable for small devices such as hearing aids, and with further work could be scaled up to larger applications.
This website uses cookies to anonymously count visitor numbers. View our privacy policy.
The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.