ZSW boosts efficiency of cadmium-free thin-film cells to world record level


Germany's Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW) has managed to boost the efficiency of cadmium-free CIGS thin-film solar cells to 21%.

Scientists at the Stuttgart-based research center replaced the system of intermediate films consisting of cadmium sulfide and zinc oxide with a combination of zinc oxysulfide and zinc magnesium oxide to achieve the score.

"This combination promises to harvest even more light than the material used in earlier CIGS cells," ZSW said in a statement, adding that with the improvement, its researchers "relegated their Japanese colleagues, the former record holders, to second place and took the lead in the global efficiency stakes."

The record for conventional solar cells made of copper indium gallium diselenide (CIGS) is 21.7%. ZSW scientists set this record and have now come very close to matching it with the new cell type. Prof. Michael Powalla, ZSW board member and head of the Photovoltaics division, believes the lack of heavy metals in the new cell's buffer layer is an advantage, but not the key benefit. The metal in conventional CIGS modules is chemically bound.

"First and foremost, the buffer layer transmits more light without the cadmium sulfide. In theory, we could use it to achieve even higher efficiency than with previous CIGS cells. The alternative buffer layer and the cadmium sulfide buffer are both deposited in a chemical bath, so a transition to manufacturing is possible without requiring additional processes."

As a buffer layer, zinc oxide-sulfide is more transparent to light in the blue wavelength range. This means more sunlight penetrates to the underlying CIGS absorber layer, which then converts more light energy into electricity, according to ZSW.

Another innovation in the cell is its improved front contact. The researchers made it with zinc magnesium oxide in place of the high resistance, thin zinc oxide film. Made in a ZSW manufacturing lab, the solar cell has a surface area of 0.5 square centimeters, a standard size for experimental cells. The Fraunhofer Institute for Solar Energy Systems ISE confirmed the results.

Alternative CIGS technology is still in the initial stages of development, so a further significant increase in efficiency is possible, ZSW said. German engineering group Manz AG, ZSW's industry partner, has already made the first test modules.

ZSW researchers expect the German-made modules to hit the market in a few years.

ZSW, which comprises sites in Stuttgart, Ulm and Widderstall, is one of the leading institutes for applied research in the fields of photovoltaic energy, renewable fuels, battery technology, fuel cells and energy systems analysis.

Popular content

This content is protected by copyright and may not be reused. If you want to cooperate with us and would like to reuse some of our content, please contact: editors@pv-magazine.com.


Related content

Elsewhere on pv magazine...

Leave a Reply

Please be mindful of our community standards.

Your email address will not be published. Required fields are marked *

By submitting this form you agree to pv magazine using your data for the purposes of publishing your comment.

Your personal data will only be disclosed or otherwise transmitted to third parties for the purposes of spam filtering or if this is necessary for technical maintenance of the website. Any other transfer to third parties will not take place unless this is justified on the basis of applicable data protection regulations or if pv magazine is legally obliged to do so.

You may revoke this consent at any time with effect for the future, in which case your personal data will be deleted immediately. Otherwise, your data will be deleted if pv magazine has processed your request or the purpose of data storage is fulfilled.

Further information on data privacy can be found in our Data Protection Policy.