Skip to content

Manufacturing

Australian scientists source silicon from solar waste to build better batteries

Researchers from Victoria’s Deakin University say they have successfully tested a new process that can safely and effectively extract silicon from end-of-life solar panels, and then convert it into nano materials worth more than $45,000 (USD 31,500) per kilogram, in order to build better batteries.

2

TÜV Rheinland opens solar module testing lab in China

Germany’s TÜV Rheinland said it will invest €22 million in the 5,000 m2 facility for testing photovoltaic modules as part of a massive lab.

Eggplants grow 50% more under solar panels

French specialist Sun’Agri unveiled the agronomic results on a crop of eggplant grown in a greenhouse commissioned in the Lot-et-Garonne in September, 2020.

3

US startup begins producing 40%-efficient thermophotovoltaic cells

Antora Energy says its new 2 MW factory will make thermophotovoltaic cells for thermal storage applications. The cells are based on III-V semiconductors and reportedly have a heat-to-electricity conversion efficiency of more than 40%.

12

The fastest energy change in history

Solar and wind are being installed at a rate that is three times faster than all other new electricity sources combined. This offers compelling market-based evidence that PV and wind are now the most competitive and practical methods for deploying new generating capacity.

7

New way to calculate LCoE of perovskite solar

Italian researchers have analyzed different ways to assess the levelized cost of energy (LCoE) of perovskite solar cells and modules. They said a common approach should soon be defined to increase the market maturity of the tech.

Only5mins! – The steeplechase of perovskite solar

The potential of perovskite solar cells and modules is still held back by issues such as stability and efficiency losses when scaling up from cell to module. But Annalisa Bruno, a scientist at Singapore’s Nanyang Technological University, says most of these challenges could be overcome in the near future, with this technology extending from building-integrated PV to conventional solar projects.

1

Passive solar module cooling tech based on paraffin wax

Egyptian researchers have used paraffin wax as a phase-change material (PCM) to reduce the operating temperatures of PV modules. They have found that the material improves power yield by more than 15%, compared to a reference module without cooling.

Vertical PV for clean energy and crop production

Researchers and project developers throughout the world are increasingly looking at agrivoltaic installations with vertically oriented solar panels.

6

Assessing vibrations in solar modules due to robot cleaning

Qatari researchers have looked at the degree to which cleaning robots could threaten the physical integrity of solar panels. They found that cleaning machines have a very minimal impact and that modules of similar sizes tend to exhibit roughly the same amount of vibration.

This website uses cookies to anonymously count visitor numbers. View our privacy policy.

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close