British researchers claim tin-based PV perovskites offer cleaner, cheaper lead alternative

Share

Researchers at the University of Warwick in the U.K. believe that they can produce an environmentally friendly perovskite solar cell in which lead is substituted for tin with no impact on efficiency or performance.

In a paper published in Nature Energy, the group claim that tin is also a cheaper substitute, and by basing perovskite cells on such a material could expedite the technology’s adoption across a number of solar-based applications.

According to professor Richard Walton and Ross Hatton, who led the Warwick team, tin-based perovskites are much more stable than previously thought, and also render solar power cheaper, safer and – potentially – more commercially attractive. "The device structure can be greatly simplified without compromising performance, which leads to the important advantage of reduced fabrication cost," read the report in Nature Energy.

Tin’s efficacy in perovskite development has been underexplored for many years, largely due to an erroneous belief that the material of tin perovskite could be too susceptible to oxidization, the low energy of defect formation and an added difficulty in forming pinhole-free films.

According to the researchers, perovskite PV devices that do not require a hole-selective interfacial layer are around 10 times more efficient than devices with the same architecture based on methylammonium lead iodide perovskite. The highest efficiency to date for a CsSnl3 PV cell is 3.56%.

"We have shown that the improved performance and tolerance to pinholes in the perovskite film stems from n-doping of the fullerene electron-transport layer by SnCl2, and that the stability of unencapsulated CsSnI3 is improved by at least an order of magnitude as compared to lead-based PPV," said the paper.

"Our findings justify an intensive research effort into tin perovskite PV, focused on improving ? to a level comparable to that of lead perovskite PVs."

Perovskite’s promise in PV has been undermined by its inherent instability when exposed to real world conditions. The use of lead in creating perovskite cells has helped to push the industry forward in terms of durability, but has raised question marks over cost and toxicity within many research fields.

Popular content

This content is protected by copyright and may not be reused. If you want to cooperate with us and would like to reuse some of our content, please contact: editors@pv-magazine.com.

Share

Related content

Elsewhere on pv magazine...

1 comment

Leave a Reply

Please be mindful of our community standards.

Your email address will not be published. Required fields are marked *

By submitting this form you agree to pv magazine using your data for the purposes of publishing your comment.

Your personal data will only be disclosed or otherwise transmitted to third parties for the purposes of spam filtering or if this is necessary for technical maintenance of the website. Any other transfer to third parties will not take place unless this is justified on the basis of applicable data protection regulations or if pv magazine is legally obliged to do so.

You may revoke this consent at any time with effect for the future, in which case your personal data will be deleted immediately. Otherwise, your data will be deleted if pv magazine has processed your request or the purpose of data storage is fulfilled.

Further information on data privacy can be found in our Data Protection Policy.