Scientists in the United States have used microwaves to convert ubiquitous plastic packaging material polyethylene terephthalate into a battery electrode component. The researchers say anodes based on the material could be suitable for both lithium-ion and sodium-ion devices.
Already responsible for changing the way we communicate and power portable devices, lithium-ion technology is now driving revolutions in both transport and energy supply the world over. A new paper published by Arumugam Manthiram of the University of Texas at Austin examines the technology’s development, from initial discoveries made in the 1970s to the considerations of today’s researchers working on the ‘batteries of the future’.
Scientists in the United States have developed a carbon nanotube method of fabricating a lithium-ion battery with a silicon anode. The device reportedly demonstrated better than 87% capacity retention after 1,500 cycles. The developers say their discovery overcomes many of the obstacles to the use of silicon as an anode and could open up the use of other materials for electrodes in lithium-ion devices.
Scientists in Moscow have developed a titanium-based electrode material for metal-ion batteries they claim challenges the perceived wisdom of the element’s cathode potential and which could give researchers a ‘playground’ for the design of sustainable, cost-effective, titanium-based electrodes.
The International Renewable Energy Agency has devised a valuation framework to lay the foundations for successful storage deployment. As the technology matures and moves toward a projected fall in price, revenue stacking will be crucial to assess viability and properly value its benefits.
Rebates are being offered to homeowners and businesses willing to couple small solar systems with energy storage.
By engineering the structure of a hard carbon electrode, scientists at the CIC energIGUNE research center have created an ‘ultrafast battery’ which has been shown to combine the energy density of a lithium device with the fast discharge times normally associated with supercapacitors.
An international group of scientists has developed a comprehensive method to track the microscopic processes at work in lithium batteries. Employing a ‘virtual unrolling’ model developed for ancient manuscripts too sensitive to be opened, the group peeked inside the layers of a commercial battery to gain a better understanding of the processes at work and the degradation mechanisms affecting them. Their findings, the group says, could provide a benchmark for battery characterization.
Panellists including a government representative and a member of the chief policy thinktank used by Narendra Modi agreed coal will continue as the staple source of Indian power into the mid century and technology should be employed to ‘clean’ it.
pv magazine has spoken to José Antonio Unanue, director of the battery energy storage system business at Ingeteam, the equipment integrator and manufacturer of the first grid-connected battery storage system in Spain, which electric utility Iberdrola launched in Caravaca de la Cruz, Murcia, at the end of November.
This website uses cookies to anonymously count visitor numbers. View our privacy policy.
The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.